ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC F/G 13/2 NONDESTRUCTIVEE TESTING FOR LIGHT AIRCRAFT PAVEMENTS. PHASE II.--ETC(U) NOV 80 A J BUSH AD-A099 593 UNCLASSIFIED FAA-RD-80-9-2 NL 1 or **3**

LEVELIT

AD A 0 99 593

NONDESTRUCTIVE TESTING FOR LIGHT AIRCRAFT PAVEMENTS

PHASE II

Development Of The Nondestructive Evaluation Methodology

Albert J. Bush III

U. S. Army Engineer Waterways Experiment Station Geotechnical Laboratory P. O. Box 631, Vicksburg, Miss. 39180

NOVEMBER 1980 FINAL REPORT

Document is available to the public through the National Technical Information Service, Springfield, Va. 22151.

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D. C. 20591

81 6 01 101

DITE FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FAA-RD 80-9/H 2	ì	
	AD-A099 59	0 (11)
4. Title and Subtitle		November 1980/
	R LIGHT AIRCRAFT PAVEMENTS	
	THE NONDESTRUCTIVE EVALUATI	ON B. Ferrorming Organization Code
METHODOLOGY -	·	8. Performing Organization Report No.
7. Author(s)		
Albert J. Bush, III		
9. Performing Organization Name and Add U. S. Army Engineer Water	wavs Experiment Station	10. Work Unit No. (TRAIS)
Geotechnical Laboratory		11. Confract of Grant No.
P. O. Box 631	(12) 126) (1	DOT-FA78WAI-848
Vicksburg, Miss. 39180		13. Type of Report and Ferred Covered
12. Sponsoring Agency Name and Address U. S. Department of Trans	portation	Final Repert •
Federal Aviation Administ		August 1979 to August 19
Systems Research and Deve		14. Sponsoring Agency Lode
Washington, D. C. 20591		
15 Supplementary Notes		
	, 6 m	
	<u> </u>	
This study is the tive pavement evaluation with gross weights of les basin from nondestructive pavement layers was devel	method to evaluate pavement is than 30,000 lb. A method testing (NDT) to predict to oped. A computer program (e program to develop a nondestres designed to support aircraft slogy that uses the deflection the elastic moduli of up to fou CHEVDEF) was developed that
tive pavement evaluation with gross weights of less basin from nondestructive pavement layers was devel predicts the moduli so the approximates the measured the subgrade are defined. Trogram developed in an enterest local compares well with laborate ologies. The predicted a allowable load from the dependix A present modulus of subgrade soils	method to evaluate pavement is than 30,000 lb. A method testing (NDT) to predict to oped. A computer program (at the deflection basin from basin. The nonlinear stree Moduli derived from NDT rearlier study (FAA-RD-77-186 ads. The subgrade elastic story test results and with clowable load from this method ynamic stiffness modulus press a laboratory procedure for	s designed to support aircraft below that uses the deflection he elastic moduli of up to fou CHEVDEF) was developed that im a layered elastic solution is esults are used in the PAVEVAL in the part of the part o
This study is the tive pavement evaluation with gross weights of less basin from nondestructive pavement layers was devel predicts the moduli so the approximates the measured the subgrade are defined program developed in an entering the allowable aircraft locompares well with laborational ologies. The predicted a allowable load from the dependix A present modulus of subgrade soils	method to evaluate pavement is than 30,000 lb. A method testing (NDT) to predict to oped. A computer program (at the deflection basin from basin. The nonlinear stree Moduli derived from NDT rearlier study (FAA-RD-77-186 and and the subgrade elasticatory test results and with allowable load from this methynamic stiffness modulus prose a laboratory procedure for Appendix B discusses the use of the computer program. 18. Distribution S Document i through the	s designed to support aircraft belogy that uses the deflection the elastic moduli of up to fou CHEVDEF) was developed that im a layered elastic solution is dependent characteristics of esults are used in the PAVEVAL in the part of the
This study is the tive pavement evaluation with gross weights of les basin from nondestructive pavement layers was devel predicts the moduli so the approximates the measured the subgrade are defined. trogram developed in an extending the allowable aircraft locompares well with labora ologies. The predicted a allowable load from the dallowable load from the dallowable soils of subgrade soils of presents a guide to the lastic moduli Layered elastic model Nondestructive testing	method to evaluate pavement is than 30,000 lb. A method testing (NDT) to predict to oped. A computer program (at the deflection basin from basin. The nonlinear stree Moduli derived from NDT rearlier study (FAA-RD-77-186 ads. The subgrade elasticatory test results and with allowable load from this methynamic stiffness modulus prosa laboratory procedure for Appendix B discusses the use of the computer program. 18. Distribution S Document in through the Information.	s designed to support aircraft belogy that uses the deflection the elastic moduli of up to fou CHEVDEF) was developed that in a layered elastic solution is dependent characteristics of esults are used in the PAVEVAL in Joy R. A. Weiss to predict moduli described by this method results from other method-hod compares well with the occdure. The determining the resilient chevolet program, and Appendix myPAVEVAL.

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

41111 ff

METRIC CONVERSION FACTORS

į		•	: 5 4	: P i	Ē		ر قم	₽~Ē			3	2			\$ \$	K E	31	<u>.</u> }	2		,	,			į	
C Messeros To Find		, and a	inches	sper i			square inches	square miles			gruces	pounds short tans			fluid cunces	guans	gellons	Cubic feet				Fahranha:t tamperature		25 A5] }•	
Approximate Conversions from Metric Mossuces When You Kosw Multish by To Find	LENGTH	90.0	9.0	1: 4	•	AREA	0.16			MASS (weight)	0.036	1.1	AMIS ION		0.03	- 90:1	0.26	25 -	!	TEMPERATURE (avact)		9/5 (then add 32)		96.6	3 2 5 5	
Approximate Conv When You Know	į	my II smeters	Centimeters	Meters		ł	Square centimeters	Square kilometers hectures (10,000 m²)		7	grams	kilograms tonnes (1000 kg)		1	Midbiliters	liters	liters	Cubic meters		168		Celsius temperature		35	2,02,	
8 t 8 t 8 t 8 t 8 t 8 t 8 t 8 t 8 t 8 t		ŧ	€ ∈	€ \$			~ €	~£ 2			Φ.	9 _			₹ -	. -	_"	e ^e e				μ		40		
22 28	33	300	61		21	;e 	S1			11111111111111111111111111111111111111			o t	e III				min	9 	s Internal			e Intili	E		
1,1,1,1,1,1	 - 	717	14.1.	''' ,	["]	պո	' ' 	'1' '1' 	' ' '	' ' '	' ' '	1,1,1	'l' 'l' •	 ' '	.İ.ı.	' ' 3	 '1'	' '	11	2	' '''	 11	' ' ,	ſ	inches	
			į	5.	5		7 85	ኈኈ፝	5 2		•	P .			ĒĒ	Ē			<u>-</u> `	'E "E		ç	,		2386.	
				Centimeters	k lometers		Square centimeters	Square meters square meters	hectares		grams	k i lograms tonnes			milliliters	milliliters	liters	liters	liters	Cubic meters		Celtine	temperature		ables, see NBS Misc. Publ.	
Approximate Conversions to Metric Mesures		LENGTH	.2.5	30	9.	AREA		0.03 8.8 8.9	0 :0	MASS (weight)	82	0.45	VOLUME		ro ř	8	0.24	96.0	8 6	0.76	TEMPERATURE (exact)	S/9 (after	subtracting	(X	rs uns and more detailed to Catalog No. C13.10:286.	
Approximate Com		-	reches	1 × ×	Hiles		squere inches	square feet square yards square miles	acres	=	ounces	short tons	(91 0002)		teaspoons tablespoons	fluid ounces	cups	quents	getions	cubic yards	TEMPE	Fabrenheit	temperature		*1 of \$254 teactors, and there exist surventure and more detailed see NBS Mac, Pilot, 286, Units of Reights and Measurin, Price \$2,25, SD Catalog Ao, C13,10,286.	
j			•	e P	Ē		75.7	₽ . \$ <u>.</u> €		ii	8 :	2			<u> </u>	8 =	v %	. t	ì	. J ē		.*			Units of Neights.	

PREFACE

This study, the second phase of a two-phase program, was sponsored by the Federal Aviation Administration through Inter-Agency Agreement No. DOT FA78WAI-848, "Nondestructive Testing for Light Aircraft Pavements." Phase I of the study was conducted during the period April 1978 - July 1979 and was reported in FAA Report No. FAA-RD-80-9, "Nondestructive Testing for Light Aircraft Pavements; Phase I, Evaluation of Nondestructive Testing Devices." Phase II was conducted during the period August 1979 - August 1980 under the direction of Mr. J. P. Sale, Chief (retired), Geotechnical Laboratory (GL); Dr. D. C. Banks, Acting Chief, GL; Dr. P. F. Hadala, Assistant Chief, GL; Messrs. R. L. Hutchinson, Chief, Pavement Systems Division (PSD); A. H. Joseph, Acting Chief, PSD; and J. W. Hall, Jr., Chief, Prototype Testing and Evaluation Unit, PSD, of the U. S. Army Engineer Waterways Experiment Station (WES). Dr. Walter R. Barker and Messrs. P. S. McCaffrey, Jr., R. D. Curtis, and A. J. Bush III actively participated in the study. The report was prepared by Mr. Bush.

Director of the WES during the conduct of the investigation and preparation of this report was COL Nelson P. Conover, CE. Technical Director was Mr. Fred R. Brown.

Accession For
NTIS GRA&I
DTIC TAB
Unannounced LJ
Justification
Distribution/ Availability Codes
Avetl and/or
Dist Special
R

TABLE OF CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	1 1
PURPOSE	1
DEVELOPMENT OF THE EVALUATION METHODOLOGIES	2
REVIEW OF NDT EVALUATION PROCEDURES	2 14
RELATIONSHIP OF LAYERED ELASTIC THEORY TO MEASURED DEFLECTIONS	8
DETERMINATION OF LAYER MODULUS VALUES FROM BASIN DATA	21
PREDICTION OF LAYER MODULUS VALUES	30
DETERMINATION OF SUBGRADE MODULUS FOR EVALUATION	35
COMPARISION OF SUBGRADE MODULUS VALUES	36
EVALUATION OF ALLOWADLE AIRCRAFT LOADS	39
NONDESTRUCTIVE EVALUATION PROCEDURE	45
GENERAL	45
NONDESTRUCTIVE TESTING EQUIPMENT	45
DATA COLLECTION	45
DETERMINATION OF LAYER MODULUS VALUES	48
DETERMINATION OF ALLOWABLE AIRCRAFT LOADS	50
CONCLUSIONS AND RECOMMENDATIONS	53
REFERENCES	54
APPENDIX A: LABORATORY PROCEDURE FOR DETERMINING THE RESILIENT MODULUS OF SUBGRADE SOILS	A-1
THE RECEDENT MODEL OF CONCRETE COLUMN COLUMN CO	
APPENDIX B: CHEVDEF PROGRAM	B-1
ADDRNOTY C. CUITE TO THE USE OF COMDUTTED DECRAM DAVENAL	

LIST OF ILLUSTRATIONS

Figure No.		Page
1	Average results of resilient modulus tests on PTRF subgrade materials	9
2	Results of resilient modulus tests on PTRF subbase materials	9
3	Modulus-temperature relationships for AC surfacing	10
14	Relationship of subgrade resilient modulus and deviator stress used in CHEVIT	11
5	PTRF item 1A pavement section breakdown for CHEVIT input	12
6	Comparison of layered-elastic deflection basins with and without rigid layer to measured basins	13
7	Predicted and measured basins on PTRF items 1A, 1B, and 2	15
8	Predicted and measured basins on PTRF items 3, 4, and 5 .	16
9	Predicted and measured basins on PTRF items 6 , 7 , and 8 .	17
10	Predicted and measured basins on PTRF items A, B, and C $$.	18
11	Predicted and measured basins on PTRF items E, F, and G $$.	19
12	Load versus time history for 5000- and 7000-1b loads of the Model 2008 Road Rater	20
13	Patterns of resilient deflections under a 24-inch-diameter plate (plate pressure = 4 psi) directly on the subgrade	26
14	Effect of distance from center of rigid plate on predicted modulus for flexible pavement	27
15	Effect of distance from center of rigid plate on predicted modulus for rigid pavement	27
16	Effect of varying Poisson's ratios (v_1 , v_2 , v_3 , and v_4) on predicted modulus values	33
17	Comparison of subgrade strain criteria	37
18	Comparison of subgrade modulus by the DSM and layer elastic method	39
19	Comparison of allowable gross aircraft loads from the DSM and layered elastic method	ЦO
20	Pavement structure and test results on PCC pavement	43
21	Results of resilient modulus tests on the PCC pavement subgrade materials	43
22	Prediction of flexible pavement temperatures	47

Figure No.		Page
53	Relationship between design pavement temperature and design air temperature	
	-	51
A-1	Triaxial cell	A-3
A-2	LVDT clamps	A-4
A-3	Presentation of results of resilience tests on cohesive soils	A-7
A-4	Presentation of results of resilience tests on cohesionless soils	A-10
	LIST OF TABLES	
Table		
1	Model 2008 Road Rater Deflections on PTRF Items for 7000- and 5000-lb Loads	5
2	Pavement Characteristics for PTRF Items	7
3	Comparison of the Effects of Static Preload on PTRF Items 1A, 1B, and 2 Using the CHEVIT Program	20
4	Reproducibility of the CHEVDEF Program for a Thin Section	28
5	Reproducibility of the CHEVDEF Program for a Thick Section	29
6	Reproducibility of the CHEVDEF Program for a Thick Section with Variable Deflection Distances	31
7	Reproducibility of the CHEVDEF Program for a Section	<u> </u>
·	with a Stiff Layer	32
8	Predicted Modulus Values for PTRF Items from CHEVDEF	34
9	Deviator Stress-Resilient Modulus Relationships from Laboratory Tests	38
10	DSM Evaluation of the PTRF	38
11	Allowable Gross Aircraft Loads from PAVEVAL	41
12	Predicted Modulus for PCC Pavement	44
13	Typical Ranges for Modulus Estimates and Poisson's Ratio Values for Pavement Layers	49
A-1	Example Data Form for Recording Results of Resilience Tests of Cohesive Soils	A-8
A-2	Example Data Form for Recording Results of Resilience	A 11

UNTRODUCTION

BACKGROUND

Nondestructive testing (NDT) devices are being widely used to evaluate the load-carrying capability of pavements for air carrier and highway pavements. Evaluation procedures have been developed using various types of NDT devices for these pavements. Phase I¹ of this study evaluated commercially available NDT devices for use on light aircraft pavements (design gross loadings less than 30,000 lb). Phase II, reported herein, is to develop a methodology for evaluation of light aircraft pavements based upon multilayered elastic models and limiting stress/strain criteria.

PURPOSE

The purpose of Phase II of this study is to develop an evaluation procedure based on a multilayered elastic procedure for evaluating pavements that support aircraft with gross weights of less than 30,000 lb. The evaluation will determine the allowable gross aircraft load for a given number of operations.

SCOPE

This study will utilize data only from nondestructive testing devices similar to the Model 2008 Road Rater. Although concepts for the model are general and would probably apply to any of the other devices evaluated in the Phase I study, this device alone was used in development of the evaluation methodology.

DEVELOPMENT OF THE EVALUATION METHODOLOGY

REVIEW OF NDT EVALUATION PROCEDURES

Since a number of NDT pavement evaluation procedures have been developed, a cursory review will be made to outline the confines for which this methodology was restricted.

Green and Hall² reported a procedure that uses the U. S. Army Engineer Waterways Experiment Station (WES) 16-kip vibrator. This procedure uses a dynamic load sweep at a constant frequency of 15 Hz. Only the center deflection is measured and the resultant parameter (dynamic stiffness modulus (DSM)) is computed as the inverse slope of the upper third of the load deflection relationship. The DSM is correlated directly with allowable single-wheel load. The procedure utilizes the U. S. Army Corps of Engineer (CE) California Bearing Ratio (CBR) design for flexible pavements and the Westergaard theory for rigid pavements.

Weiss³ reported a layered elastic evaluation procedure using results from the WES 16-kip vibrator. This procedure is used to predict the subgrade modulus. Since the Model 2008 Road Rater produces a 4000-lb peak load (8000-lb peak to peak) as compared with 15,000-lb peak for the WES 16-kip vibrator, this procedure could not be readily adapted.

Yang reported a procedure that uses the WES 16-kip vibrator and a frequency sweep where the dynamic load is held constant and the frequency is varied between approximately 5 and 50 Hz. This procedure predicts the subgrade modulus.

The frequency sweep test requires approximately 10 times the amount of time to conduct as a load sweep. WES research indicates that the data derived from a frequency sweep do not warrant the extra time required to collect. Pavement material properties are frequency-dependent. Therefore, another variable is introduced to the evaluation method that must be accounted for.

Treybig et al. ⁵ reported a layered elastic evaluation/overlay design procedure using the Dynaflect testing device. In this procedure, the modulus values of the upper layers are assumed. Samples are taken of the granular base and subbase and subgrade materials, which are

tested in the laboratory using a dynamic load triaxial test to determine the resilient modulus. By use of the deflection from the number one sensor of the Dynaflect and assumed or laboratory modulus values, the modulus of the subgrade is determined through a series of nomographs. This modulus is compared with the laboratory results of resilient modulus versus deviator stress. Through a series of approximations of stress and modulus that parallels the laboratory relationship, the design modulus is predicted. The basic concepts of the Treybig procedure are similar to the approach being reported except that a goal in developing this procedure is not to require destructive sampling and laboratory testing.

Koole reported a layered elastic evaluation/overlay design procedure using the Falling Weight Deflectometer. The deflection at the center of the applied load and the ratio of that deflection to a deflection some distance away from the applied load were used. The pavement was characterized by a three-layer system. The subgrade modulus and either the asphaltic concrete (AC) modulus or the AC thickness are determined in this procedure. The modulus values for the AC layer (if the thickness is to be determined) and layer 2 are determined from laboratory results or from construction records. The effective thickness of the surface layer is determined. From these values, the layered elastic theory is used to predict allowable or overlay requirements.

Anani⁷ reported results using the Model 400 Road Rater. The Model 400 Road Rater, described in detail in Phase 1 of this study, applies a peak-to-peak dynamic load of approximately 720 lb to the pavement through two 4- by 7-in. pads spaced 6 in. apart. Four sensors are used to monitor deflections. One is located between the pads while the other three are spaced at 1-ft intervals.

Anani used the BISAR computer program developed by the Shell Oil Company with successive approximation techniques to determine the elastic moduli of the pavement layers. Using up to a four-layer system, the procedure approximated the E values by the following equation:

$$E(I)_{new} = E(I)_{old} \times \frac{RRD(I) + \Delta(I)}{2} RRD(I)$$

where

 $E(I)_{now}$ = modulus value for layer I

 $E(I)_{old}$ = previous assumed modulus value for layer I

 $\Delta(I)$ = deflection from BISAR associated with E(I)_{old}.

Other procedures have been developed by $Sharpe^8$ and $Ullidtz^9$ that predict modulus values for pavement systems using the layered theory and nondestructive testing devices. These procedures use two deflection measurements from the deflection basin.

As shown above, a number of researchers used nondestructive testing and the layered elastic theory to evaluate and design overlays for pavements. The procedure developed in this study will incorporate some of the stronger points of those procedures as well as add some new approaches.

EXPERIMENTAL DATA

The data used in developing this procedure were collected on the Pennsylvania Transportation Research Facility (PTRF) and on selected pavements at the WES. The PTRF is a one-mile track located at Pennsylvania State University. Fifteen items were tested with the Model 2008 Road Rater in June 1978. From 1 to 20 tests were conducted on each item. The deflections used in this study will be the average of those tests. These averages are given in Table 1 for the 7000- and 5000-1b force levels. The pavement structures of the 15 items are given in Table 2. Also shown in Table 2 are the number of equivalent 18-kip axle loads (EAL) that were applied to the pavement items prior to testing. The surface conditions of the items were good except for items 3, A, and C. These items exhibited some surface distress such as longitudinal and alligator cracking.

Two test pits were excavated in the PTRF to obtain samples of the granular subbase material and the subgrade. Undisturbed block samples and bag (disturbed) samples were taken of the subgrade. Bag samples were also taken of the subbase. Resilient modulus tests were conducted

Table 1
Model 2008 Road Rater Deflections on PTRF Items
for 7000- and 5000-1b Loads

		Meer		7000	7000-1b Load				5000	5000-1b Load		
Item	No. of Tests	Pavement Temperature, OF	Mean Peak-Peak Force, 1b	D ₁	Mean Deflection, mils	tion, mi	1s Du	Mean Feak-Feak Force, lb	Mea	Mean Derlection,	, , ,	mils Pl
1A Std Dev Coeff Var, %	27	73.9	7246.0 175.0 2.4	5.9 0.95 16.1	4.43 0.55 12.4	3.07 0.81 26.4	1.93 0.57 29.3	5127.0 151.0 0.03	3.79 1.01 26.6	\$ 0 d d	33.00 10.11	1.18 0.15 12.9
1B Std Dev Coeff Var, #	14	դ.06	6936.0 245.0 3.5	6.74 0.46 6.8	4.98 0.10 8.0	2.71 0.22 8.0	1.58 0.49 3.1	12988.0 129.0 0.03	1.33 0.80 18.5	6.00 14.00 16.00 1	22.3	0.98 0.17 17.0
2 Std Dev Coeff Var, %	=======================================	85.0	7016.0 36.0 0.5	5.79 0.47 8.0	4.34 0.37 8.5	2.44 0.25 10.3	1.11 0.12 10.6	4988.0 80.0 0.02	3.66 0.36 9.8	2.56 0.39 34.9	35.3	0.75 0.27 35.7
3 Std Dev Coeff Var, #	10	96.5	7030.0 33.0 0.4	11.3 1.54 13.6	8.17 1.17 14.3	3.70 0.92 24.9	1.93 0.91 47.3	5012.0 47.0 0.01	6.92 0.87 12.5	5.21 0.82 15.8	20.23 13.83 18.83	1.03 0.29 27.9
μ Std Dev Coeff Var, %	11	97.5	7015.0 29.0 0.4	3.26 0.93 28.7	2.92 0.80 27.5	2.39 0.79 33.2	1.81 0.68 37.4	4035.0 30.0 0.01	2.15 0.57 26.4	1.93	33.15	1.15 0.39 33.7
5 Std Dev Coeff Var, %	Ħ	95.1	7032.0 23.0 0.3	7.60 0.53 7.0	5.39 0.70 13.1	2.77 0.68 24.6	1.54 0.47 30.3	5018.0 66.0 0.01	4.66 0.37 7.9	3.47 0.37 10.7	1.85 0.27 14.4	1.05 0.23 22.4
6 Std Dev Coeff Var, %	11	80.2	7040.0 32.0 0.5	4.56 0.62 13.5	3.66 0.67 18.3	2.47 0.33 13.4	1.61 0.25 15.6	5011.0 5C.0 0.01	2.91 0.45 15.6	2.55 0.66 25.8	1.62 0.23 13.9	1.09 0.21 19.1
				3	Continued	(1						

...e: 1°F =-17°C; 1 lbf = 4.448 N; 1 mil = 25.4 microns.

Table 1 (Concluded)

		Moon		7000	7000-1b Load				2000-	5000-1b Load		
	No.	ŗ	Mean Peak-Peak	Mea	Mean Deflection, mils	tion, mi	1.8	Meari		n Deflec	tion, mi	S
Item	Tests	Temperature, F	Force, 1b	D1	°2.	m _D	o ⁷	Force, 1b	ρŢ	D ₂ D ₃	D3	رت ا
7 Std Dev Coeff Var, #	п	77.3	7090.0	1.40	3.30	2.30	1.50	5130.0	3.00	2.20	2.50	00:1
8 Std Dev Coeff Var, %	19	80.8	7103.0 106.0 1.5	9.03 1.21 13.4	6.15 0.70 11.4	3.11 0.84 27.2	1.57 0.68 43.6	5026.0 73.0 0.01	5.46 0.90 16.6	3.94 0.65 16.5	1.75	0.98 0.30 6.30
A Std Dev Coeff Var, %	14	87.1	7116.0 202.0 2.8	10.60 2.61 24.6	8.94 2.71 24.3	3.56 0.72 20.3	1.75 0.57 32.6	5044.0 86.0 0.02	6.34 1.29 20.4	5.12 1.05 20.5	800 800 800 800 800 800 800 800 800 800	3 6 6 6 3 6 6 6
B Std Dev Coeff Var, %	12	85.0	7087.0 56.0 0.1	3.53 0.35 9.8	2.98 0.35 11.7	2.18 0.13 5.8	1.50 0.13 8.5	5159.0 103.0 0.02	2.47 0.28 11.3	2.08 0.24 11.7	1.05 17.17 17.17 17.17	
C Std Dev Coeff Var, %	0	82.2	7028.0 43.0 0.6	3.97 32.6	8.48 2.68 31.6	2.79 0.44 15.6	1.33 0.33 25.1	5051.0 108.0 0.02	7.18 2.07 28.9	5.05 1.32 26.1	91 911 100	9 da 0 da 0 da
E Std Dev Coeff Var, %	11	82.4	7236.0 118.0 1.6	9.37 0.72 7.6	6.74 0.59 8.8	2.78 0.34 12.2	1.29 0.16 12.7	5076.0 101.0 0.02	5.45 0.47 8.6	3.99 c.31 7.8	##J 0\	6.4.1
F Std Dev Coeff Var, %	12	77.5	7019.0 45.0 0.6	7.66 0.72 9.5	5.88 0.52 8.8	2.76 0.18 6.6	1.36 0.25 18.4	5053.0 35.0 0.01	4.9 0.5 10.1	3.81 0.35 9.2	0747 07740 7407	8.1
G Std Dev Coeff Var, #	12	74.0	7022.0 23.0 0.3	8.01 0.62 7.8	6.33 0.53 8.3	3.10	1.51 0.17 11.5	5010.0 49.0 0.01	4.93 0.38 7.8	3.89 0.34 8.7	8874 संदर्भ	5.10

Table 2
Pavement Characteristics for PTRF Items

	Layer No. 1		Laver No. 2	TAVAT	Laver No 3	1010	-	
Thickness		Thickness		Thickness		Thickness	Chase	
in.	Type	in.	Type	in.	Type	in.	93.6	35. Test
7.5	Bituminous concrete	20.5	Subbase	ł	Subgrade			2.797.000
7.5	Bituminous concrete	14.0	Subbase	ł	Subgrade			2,386,000
8.5	Bituminous concrete	8.0	Subbase	1	Subgrade			2,386,000
2.5	Bituminous concrete	8.0	Aggregate lime pozzolan	8.0	Subbase	ł	Subgrade	23,386,500
2.5	Bituminous concrete	8.0	Aggregate cement	8.0	Subbase	ł	Subgrade	2.356.000
2.5	Bituminous concrete	8.0	Aggregate bituminous	8.0	Subbase	ŀ	Subgrade	
10.5	Bituminous concrete	8.0	Subbase	ł	Subgrade		· •	2.386.200
9.5	Bituminous concrete	8.0	Subbase	}	Subgrade			2005,986,8
8.0	Bituminous concrete	8.0	Subbase	1	Subgrade			2.303.000
2.5	Bituminous concrete	0.4	Aggregate cement*	8.0	Subbase	ł	Subgrade	
2.5	Bituninous concrete	6.0	Aggregate cement*	8.0	Subbase	;	Subgrade	
2.5	Bituminous concrete	6.0	Aggregate cement**	8.0	Subbase	;	Subgrade	
0.4	Bituminous concrete	8.0	Crushed stone	8.0	Subbase	ŀ	Subgrade	1 1 1
5.5	Bituminous concrete	6.0	Aggregate lime pozzolan	8.0	Subbase	ł	Subgrade	, , , , , , , , , , , , , , , , , , ,
5.5	Bituminous concrete	0.4	Aggregate lime pozzolan	8.0	Subbase	;	Subgrade	

Note: 1 in. = 2.54 cm.

* Limestone aggregate.

** Slag aggregate.

on these samples in accordance with the procedures outlined in Appendix A. Average results of the subgrade tests are presented in Figure 1. It should be noted that undisturbed samples gave higher modulus values than disturbed samples. The granular subbase results are presented in Figure 2.

RELATIONSHIP OF LAYERED ELASTIC THEORY TO MEASURED DEFLECTIONS

GENERAL

The first assumption in developing this procedure is that dynamic deflections correspond to those deflections predicted from the layered elastic theory. To validate this assumption experimental data were compared with results from two computer programs. The first is the Shell BISAR computer program, based on the layered elastic theory, which relates stress and strain in each layer to a load applied at the surface of a pavement. The other program, entitled CHEVIT, 10 gives a nonlinear approach to the solution of the modulus of the lower layers by using laboratory stress-modulus relationships for granular and subgrade layers. Those layers are divided into sublayers for which the stress is calculated initially, and from the laboratory stress-modulus relationship a new modulus is computed. With this modulus, the program again computes the stress. The program iterates until a solution is obtained for modulus and stress.

LINEAR ANALYSIS

To determine the applicability of the deflection basin to the layered elastic analysis, the BISAR computer program was initially used. The modulus values for the AC surface layers were obtained from the 16-Hz relationship presented in Figure 3. An evaluation of data collected with the WES 16-kip vibrator on specially constructed temperature sections at the WES was made using the 16-Hz modulus versus temperature relationships. The test sections were small (approximately 20 by 20 ft) and consisted of varying thickness of AC over a lean clay (CL) subgrade. The design of these sections considered the thickness of AC to be the only variable. Tests were conducted over a wide range of temperatures. Modulus values for the AC as determined from Figure 3 were used in the

TEST NUMBER ; RENOLDED valuates CONTENT, with 18.4 1 10.0 DENSITY, 4 [post]: 119.8 19 INDICATES UNDISTURBED SAMPLE

AVERAGE RESULTS

-9999E

Figure 1. Average results of resilient

S 10 15 20 DEVIATOR STRESS, & d PSI

5000

RESILIENT

modulus tests on PTRF subgrade material (1 psi = 703 kg/m^2)

The second second

*SUJUDOM

£20000-1

25000-

UNDISTURBED

Figure 3. Modulus-temperature relationships for AC surfacing (1 psi = 703 kg/m^2 ; $1^{\circ}\text{F} = -17^{\circ}\text{C}$) (after Kingham and Kallas¹¹)

BISAR program to predict deflections. Good correlation was obtained for the temperature test section between the deflection ratios (deflection at a given temperature to deflection at $70^{\circ}F$) obtained from the experimental results and the results from the BISAR. Therefore, the relationships presented in Figure 3 were selected for determination of the AC modulus values.

Modulus values for the pavement layers other than the AC surface layers of the PTRF were estimated from construction data and based on laboratory results that were collected during the initial construction (not the laboratory results presented in this report). Poor agreement was obtained between the BISAR deflections and the measured deflections for the PTRF sections. Therefore, it was concluded that it is extremely difficult to estimate correct modulus values for pavement layers that have been subjected to extensive traffic and environmental effects.

NONLINEAR ANALYSIS

An analysis was then made using the CHEVIT nonlinear program.

The granular subbase layer was characterized by the laboratory relationships shown in Figure 2. The subgrade resilient modulus relationships in Figure 4 represent the averages of the undisturbed sample tests. Figure 5 shows a typical pavement section (PTRF item 1A). The initial estimate for the modulus of the nonlinear layers, as well as the modulus for the linear layer, is given. Pavement sections for all of the PTRF items are shown in Table 2.

The summation of the strains in the bottom layer to infinity by the layered elastic model tends to give larger deflections than the measured values. To compensate for this effect, a rigid layer was placed in this system model at a depth of 20 ft below the surface. Figure 6 shows a comparison of predicted deflections with and without the rigid boundary to the measured deflections. Note that the basins predicted from CHEVIT using the rigid layer agree better with the Model 2008 Road Rater basins than those predicted without the rigid layer.

Figure 4. Relationship of subgrade resilient modulus and deviator stress used in CHEVIT (1 psi = 703 kg/m²)

Figure 5. PTRF item 1A pavement section breakdown for CHEVIT input (1 in. = 2.54 cm; 1 psi = 703 kg/m²)

Figure 6. Comparison of layered-elastic deflection basins with and without rigid layer to measured basins (1 in. = 2.54 cm; 1 mil = 25.4 microns; 1 lbf = 4.448 N)

Basins are shown for each of the 15 test items of the PTRF in Figures 7 through 11. Tests with both 5000- and 7000-lb loads were conducted and compared with CHEVIT results. Note the good agreement in the basin data for those sections without the lime and cement-treated base courses. The modulus values for the lime and cement-treated layers were taken from construction records. The heavy traffic on the PTRF at the time of test apparently resulted in cracking of these stabilized layers. Therefore, the stabilized layers had much lower moduli values at the time of the test than those values used in the CHEVIT analysis. This fact explains the variance in measured and predicted deflections in items 3, A, C, E, F, and G shown in Figures 8, 10, and 11. From the results, it appears that the deflection basin is a measurement that can be modeled with a layered elastic theory and, therefore, used to predict the strength parameters of the pavement layers.

EFFECTS OF STATIC PRELOAD

The effects of the static load applied to the pavement surface as a preload with the Model 2008 Road Rater were analyzed using the CHEVIT program. Figure 12 illustrates loading versus time for the Model 2008 Road Rater for the 5000- and 7000-lb tests. The sinusoidal loading applies a minimum and a maximum force to the pavement surface. The magnitudes of these forces range from 500 to 6500 lb for the 5000-lb peak-topeak force level and from 500 to 7500 lb for the 7000-lb peak-to-peak force. The CHEVIT program was run with forces of 6500 and 1500 lb, and the differences (diff) in predicted deflections from each run were calculated to model the sinusoidal loading of the Road Rater. The results were compared to a run where the force was 5000 lb. Table 3 shows the results of these calculations for PTRF items 1A, 1B, and 2. A maximum difference of 6.3 percent occurred at the 5000-1b force level at 12 in. from the center of the load; however, the percent difference was practically negligible for most comparisons. This analysis indicates that the effect of the static load for computer modeling of the Road Rater results is negligible particularly when the vibrator is operated near the maximum output. Therefore, the static load will be neglected in the determination of the layer modulus values.

Figure 7. Predicted and measured basins on PTRF items 1A, 1B, and 2 (1 in. = 2.54 cm; 1 mil = 25.4 microns; 1 lbf = 1 .448 H)

Figure 8. Predicted and measured basins on PTRF items 3, L , and 5 (1 in. = 2.5 L cm; 1 mil = 25. L microns; 1 lbf = L 1,4 L 8 N)

Figure 9. Predicted and measured basins on PTRF items 6, 7, and 8 (1 in. = 2.54 cm; 1 mil = 25.4 microns; 1 lbf = 4.448 N)

Figure 10. Predicted and measured basins on PTRF items A, B, and C (1 in. = 2.54 cm; 1 mil = 25.4 microns; 1 lbf = 44.8 $_{11}$)

Figure 11. Predicted and measured basins on PTRF items E, F, and G (1 in. = 2.54 cm; 1 mil = 25.4 microns; 1 lbf = 4.448 N)

Figure 12. Load versus time history for 5000- and 7000-lb (5- and 7-kip) loads of the Model 2008 Road Rater (1 kip = 4.448 kN)

Table 3

Comparison of the Effects of Static Preload
on PTRF Items 1A, 1B, and 2 Using the CHEVIT Program

Lead				flections ted Dista				
<u>l.b</u>	0	9	12	18	24	36	48	60
			PTI	RF 1A				
6500 <u>1500</u> Diff 5000	6.086 1.567 4.519	5.232 1.349 3.883	4.620 1.194 3.426	3.532 0.911 2.621	2.712 0.692 2.020	1.666 0.408 1.258	1.027 0.239 0.788	0.715 0.161 0.554
5000 Percent	4.797	h.125	3.643	2.782	2.130	1.294	0.790	0.546
Dirference	6.2	6.2	6.3	6.1	5.4	2.9	0.3	-1.4
7500 <u>500</u>	6.925 0.543	5.954 0.468	5.257 0.415	4.022 0.317	3.095 0.240	1.913 0.140	1.187 0.080	0.829
Diff 7000	6.382	5.486	4.842	3.705	2.855	1.773	1.107	0.776
			(Cont	inued)				

Note: 1 lbf = 4.448 N; 1 in. = 2.54 cm.

Table 3 (Concluded)

Load				flection ted Dist				
<u>lb</u>	0	_9	12	18_	24	36_	48_	60
7000 Percent	6.507	5.594	4.940	3.778	2.904	1.790	1.107	0.772
Difference	2.0	2.0	2.0	2.0	1.7	1.0	0.0	-0.5
			PT	RF 1B				
6500 1500	7.128 1.849	5.829 1.511	5.014 1.2 9 9	3.598 0.922	2.641 0.660	1.589 0.372	0.970 <u>0.217</u>	0.694 <u>0.153</u>
Diff 5000	5.279	4.318	3.715	2.676	1.981	1.217	0.753	0.541
5000 Percent	5.614	4.588	3.944	2.820	2.057	1.221	0.739	0.528
Difference	6.3	6,.3	6.2	5.4	3.8	0.3	-1.9	-2.4
7500 500	8.120 0.646	6.644 0.529	5.718 0.455	4.113 0.323	3.030 0.229	1.837 0.126	1.127 0.072	0.806 0.050
Diff 7000	7.474	6.115	5.263	3.790	2.801	1.711	1.055	0.756
7000	7.625	6.237	5.366	3.856	2.835	1.713	1.048	0.750
Percent Difference	2.02	2.0	2.0	1.7	1.2	0.1	0.6	-0.8
			PTI	<u>RF 2</u>				
6500 1500	6.071 1.471	5.116 1.238	4.492 1.086	3.405 0.817	2.613 0.620	1.618 0.374	1.001 0.226	0.696 <u>0.157</u>
Diff 5000	4.600	3.878	3.406	2.588	1.993	1.244	0.775	0.539
5000	4.706	3.963	3.477	2.630	2.013	1.240	0.764	0.532
Percent Difference	2.3	2.2	2.1	1.6	1.0	-0.3	-1.4	-1.3
7500 500	6.983 0.502	5.887 0.423	5.171 0.371	3.925 0.279	3.018 0.211	1.874 0.126	1.161 0.075	0.807 0.052
Diff 7000	6.481	5.464	4.800	3.646	2.807	1.748	1.086	0.755
7000	6.527	5.501	4.831	3.665	2.815	1.746	1.080	0.751
Percent Difference	0.7	0.7	0.6	0.52	0.3	-0.1	-0. 6	-0.5

DETERMINATION OF LAYER MODULUS VALUES FROM BASIN DATA

DEVELOPMENT

The deflection basin produced by applying a load to the pavement

with the Model 2008 Road Rater gives four input parameters to the system analysis that can be used to derive the strength parameters of the pavement layers. A program called CHEVDEF was developed to determine a set of modulus values that provide the best fit between a measured deflection basin and a computed deflection basin when given an initial estimate of the modulus values, a range of modulus values, and a set of measured deflections.

Consider the pavement system where:

- a. The modulus is unknown for a number of layers (NL).
- b. The deflection due to plate load is measured at a number of deflection (ND) locations.
- c. ND is greater than NL .

The objective is to determine the set of E's that will minimize the error between the computed deflection Δ and the measured deflection RRD. To accomplish the objective, a relationship was developed for the deflection at a point j as a function of the unknown E's, i.e.,

$$\Delta j = f(E_1, E_2...E_{NL})$$

then the error at a position where the deflection was measured is

$$RRD_{j} - \Delta_{j} = RRD_{j} - f(E_{1}, E_{2}, \dots E_{NL})$$

This expression is then squared and summed with respect to each measured deflection

$$\sum_{j=1}^{ND} ERROR^2 = \sum_{j=1}^{ND} \left[RRD_j - f_j(E_1 \dots E_{NL}) \right]^2$$

To minimize the error with respect to an unknown E, the partial derivative of the error function is taken with respect to the E. By taking a derivative with respect to each unknown E, then a set of NL equations is obtained that can be solved giving the set of E's for the minimum error between the measured basin and the computed basin.

First, a set of E values is assumed and the deflection Δ_j° is computed corresponding to the measured deflection RRD, . Each unknown

E is varied individually and a new set of deflections is computed for each variation. Using the two computed deflections and the two values of each E, a function is determined for each deflection. For example, let

$$El = log_{10} E$$

Then the deflection at location 1 is given as a function of E_{γ} , i.e.,

$$\Delta_1 = A_{11} + S_{11}E\ell_1$$

where

$$S_{11} = \frac{\Delta_{1}^{\circ} - \Delta_{1}^{1}}{E\ell_{1}^{\circ} - E\ell_{1}^{1}}$$

$$A_{11} = \Delta_{1}^{\circ} - S_{11}E_{1}^{\circ}$$

$$E\ell_{1}^{\circ} = \log_{10} \text{ of first assumed value of } E_{1}$$

$$E\ell_{1}^{1} = \log_{10} \text{ of } E_{1} \text{ after the variation}$$

$$\Delta_{1}^{\circ} = \text{computed deflection at position 1 for } E_{1}^{\circ}$$

 Δ_1^1 = computed deflection at position 1 for E_1^1

Likewise, functions are determined for each deflection and each unknown E , resulting in $\ j$ = 1 to ND and $\ i$ = 1 to NL . Then

$$\Delta_{j} = A_{ji} + S_{ji}El_{i}$$

To write an expression for $\;\Delta_{,j}\;$ as a function of all $\;E^{*}s$, the following is used

$$\Delta_{j} = \Delta_{j}^{\circ} + (changes in \Delta_{j}^{\circ})$$
 due to changes in the E's)

Consider when the modulus of layer changes from E_1° to E_1^1 , the change in Δ_j would be $S_{ji}(E\ell_1^1-E\ell_1^\circ)$.

Thus

$$\Delta_{j} = \Delta_{j}^{\circ} + \sum_{i=1}^{NL} S_{ji} (E\ell_{i} - E\ell_{i}^{\circ})$$

The value of Δ_J^0 can be expressed in terms of any of the unknown E's . i.e., F_{NL} , as

$$\Lambda_{J}^{O} = \Lambda_{JNL} + S_{JNL} E \ell_{NL}^{O}$$

The expression for Δ_i now becomes

A Company

$$\Delta_{j} = A_{jNL} + S_{jNL} E l_{NL}^{\circ} + \sum_{i=1}^{NL} S_{ji} (E l_{i} - E l_{i}^{\circ})$$

The error squared for the jth position is $(RRD_j - \Delta_j)^2$ or

$$ERROR_{j}^{2} = \left\{ RRD_{j} - \left[A_{jNL} + S_{jNL} E \ell_{NL}^{o} + \sum_{i=1}^{NL} S_{ji} (E \ell_{i} - E \ell_{i}^{o}) \right] \right\}^{2}$$

The summation of the error for all readings is

$$\sum_{j=1}^{\text{ND}} \text{ERROR}_{j}^{2} = \sum_{j=1}^{\text{ND}} \left\{ \text{RRD}_{j} - \left[A_{j\text{NL}} + S_{j\text{NL}} \text{Ex}_{\text{NL}}^{\circ} + \sum_{i=1}^{\text{NL}} S_{ji} (\text{Ex}_{i} - \text{Ex}_{i}^{\circ}) \right] \right\}^{2}$$

If a weight term W, for each reading is to be applied, then the expression becomes

$$\sum_{j=1}^{ND} [W_{j} - (ERROR)]^{2} = \sum_{j=1}^{ND} \left(W_{j} \left\{ RRD_{j} - \left[A_{jNL} + S_{jNL} E \ell_{NL}^{\circ} + \sum_{i=1}^{NL} S_{ji} (E \ell_{i} - E \ell_{i}^{\circ}) \right] \right\} \right)^{2}$$

Taking the partial with respect to each E and setting the partial equal to zero, the following is obtained:

$$0 = \sum_{j=1}^{ND} S_{jk} W_{j} \left\{ RRD_{j}^{i} - \left[A_{jNL} + S_{jNL} E \ell_{NL}^{\circ} + \sum_{i=1}^{NL} S_{ji} (E \ell_{i} - E \ell_{i}^{\circ}) \right] \right\}$$

If the equations derived are put in the form

$$[B] \{E\} = \{C\}$$

the $\{C\}$ terms are the constant part of the equation. For k = 1 to NL

$$C_{k} = \sum_{j=1}^{ND} S_{jk}^{W_{j}} \left[RRD_{j} - \left(A_{jNL} + S_{jNL}^{ER} E_{NL}^{\circ} - \sum_{i=1}^{NL} S_{ji}^{ER} E_{i}^{\circ} \right) \right]$$

and the [B] for k = 1 to NL and i = 1 to NL is

$$B_{ki} = \sum_{j=1}^{ND} S_{jk} W_{j} S_{ji}$$

If the weight term is chosen to be $W_j = \frac{1}{RRD_j}$, the result is the same as developing the equation from

$$ERROR_{j} = \frac{RRD_{j} - \Delta_{j}}{RRD_{j}}$$

which is a percent type error. The solution of the equation is the set of E's that minimizes the percent error. The efficiency of the procedure will depend on how well the functions represent the actual relationship between the computed deflection and the E's.

It appears that as long as the final E values are within the initial input limits, the $\Delta = f(\log_{10} E)$ is a good representation of the relationship.

A computer program named CHEVDEF, consisting of the procedure described above, was used in developing the pavement evaluation procedure reported herein. CHEVDEF uses the CHEVRON layered elastic program as a subroutine to compute surface deflections. A flowchart, input format, example input, example output, and a listing of CHEVDEF are presented in Appendix B.

The limitations of this approach are that the layered elastic theory assumes a uniform pressure applied to the surface of the pavement. With the Model 2008 Road Rater, the load is applied through a rigid circular plate with the center deflection measured on top of that plate. Therefore, a difference does exist in the measured center deflection and a deflection computed from layer elastic procedures at the center of the load area, as illustrated by Fossberg 12 in Figure 13. Note that the elastic layer solution and field data coincide at approximately threefourths of the radius of the plate. In order to determine the optimum spacing for the deflection measurements, computations such as shown in Figures 14 and 15 were made with the CHEVDEF program for flexible and rigid pavements, respectively. Spacing distances of 0, 4.5, 6, and 9 inches were used for the computations. Varying these distances caused little change in the subgrade modulus for either the flexible or the rigid pavement. There was variation in the surface modulus on the flexible pavement. Based on the temperature-frequency relationship presented in Figure 3, the modulus of the asphalt layer should be 520,000 psi. Thus, from Figure 15, a distance between 4.5 and 6 in. appears to produce the best results.

Figure 13. Patterns of resilient deflections under a 24-in.-diameter plate (plate pressure = 4 psi) directly on the subgrade (1 in. = 2.54 cm) (after Fossberg¹²)

SENSITIVITY ANALYSIS

To evaluate the accuracy of the CHEVDEF, an analysis was made on a thin and a thick pavement section. The CHEVRON program was used to calculate deflections for the two pavement sections. These deflections were used as measured deflections for this analysis so that an error associated with field measurements would be eliminated. Tables 4 and 5 present the results. The modulus values listed as correct values in these tables were input to the CHEVRON program to give the deflections that were used as measured deflections in CHEVDEF. In the first case, the initial estimate for modulus was higher than the correct values. The initial estimate was lower than the correct values for the second

Figure 15. Effect of distance from center of rigid plate on predicted modulus for rigid pavement (1 ksi = 6.89 MPa; 1 in. = 2.54 cm)

Figure 14. Effect of distance from center of rigid plate on predicted modulus for flexible pavement (1 ksi : 6.89 iPa; 1 in. = 2.54 cm)

Table $^{ ext{l}}$

Reproducibility of the CHEVDEF Program for a Thin Section

	Predi	cted Modulu	Predicted Modulus Values, psi, for Cited Layer Thickness, in.	si,	Computed Deflections, mils, Distance from & of Load.	outed Deflections, mils, at C Distance from & of Load, in.		at Cited
	E,	2 1 0 1	ы 8 3	E4 226.5	Δ ₁ 4.5	Δ ₂ 12	24	Δ ₁ ,
First case:								
Correct	200,000	350,000	1,5,000	15,000	10.68	7.818	4.714	2.981
Assumed	1,50,000	800,000	100,000	30,000	5.1117	3.8035	2.3464	1.5035
Range (min-max)	(100,000-600,000)	(200,000-	(20,000-	(5,000- 70,000)				
Final	156,192	371,545	47,638	14,900	10.6439	7.7864	4.7103	2.9842
Second case:								
Correct	200,000	350,000	η2,000	15,000	10.68	7.818	4.714	2.981
Assumed	000,09	100,000	15,000	10,000	21.9558	14.2438	7.2535	4.2921
Range (min-max)	(50,000-	(50,000-	(10,000-	(5,000-30,000)				
Final	50,000	444,279	54,032	14,845	10.9201	7.7747	4.7400	3.0141
Third case:								
Correct	200,000	350,000	1,5,000	15,000	10.68	7.818	4.714	2.981
Assumed	100,000	000,009	35,000	25,000	8.2731	5.6602	2.9723	1.7357
Range (min-max)	(50,000-	(200,000 <u>-</u> 700,000)	(20,000-80,000)	(5,000-30,000)				
Final	90,830	509,630	187,84	15,114	10.5267	7.7027	4.6783	2.9597

Note: 1 psi = 703 kg/m^2 ; 1 in. = 2.54 cm; 1 mil = 25.4 microns.

Table 5

Reproducibility of the CHEVDEF Program for a Thick Section

	Fred.	icted Modulu Cited Layer	Fredicted Modulus Values, psi, for Cited Layer Thickness, in.	si, in.	Computed I	Computed Deflections, mils, at C Distance from d of Load. in.	is, mils,	at Cited
	យី	E ₂	E	E	۵	Δ2	٨٤	۵۵
	2.5	ω	8	221.5	4.5	12	27	36
First case:								
Correct	200,000	350,000	45,000	15,000	7.28	5.734	4.1820	2.970
Assumed	450,000	800,000	100,000	30,000	5.5603	4.3504	3.1429	2.2268
Range (min-max)	(100,000-	(200,000-	(20,000- 150,000)	(5,000 - 70,000)				
Final	198,498	352.192	77,808	15,006	7.2798	5.734	4.1821	2.970
Second case:								
Correct	200,000	350,000	45,000	15,000	7.28	5.734	4.1820	2.970
Assumed	000*09	100,000	15,000	10,000	15.5701	11.0651	7.0534	7.5442
Range (min-max)	(50,000-	(50,000-	(10,000- 80,000)	(5,000-30,000)				
Final	196,507	345,207	47,571	14,950	7.2656	5.7153	4.1752	2.9727
Third case:								
Correct	200,000	350,000	7,5,000	15,000	7.28	5.734	4.1820	2.970
Assumed	100,000	000,009	35,000	25,000	5.4674	7970.7	2.8051	1.8720
Range (min-max)	(50,000-	(200,000-	(20,000- 80,000)	(5,000-30,000)				
Final	173,674	380,337	47,545	15,078	7.1869	5.6577	4.1483	2.9536

Note: 1 psi = 703 kg/m^2 ; 1 in. = 2.54 cm; 1 mil = 25.4 microns.

case. In the third case, the initial estimate was alternated between low and high values. The program reasonably reproduced all modulus values for the thick section but varied from the correct values for the thin upper layers for the thin section. The values for the two bottom layers were very close even for the thin section.

To determine the reproducibility for different spacings of deflections, the data for the thick section were selected. Table 6 lists the results of this analysis. No significant difference occurred due to the location of the deflection with respect to the final value of modulus for up to four layers.

Another check was made on a typical section with a stiff (stabilized) layer. Table 7 summarizes the results. Again the program produced a good approximation of the correct values for the four-layer system.

To determine the sensitivity of the CHEVDEF program to the Poisson's ratio of each layer, an analysis was made using the thick section. The Poisson's ratio was varied between 0.2 and 0.5 for each layer. Figure 16 shows the change in modulus values for these variations in the Poisson's ratio. There is little effect on the predicted modulus values when the Poisson's ratios for layer 2 and layer 3 are varied. The variations are large in layer 1 and layer 2 when the Poisson's ratios of layer 1 and layer 4 are varied. In all cases, there is little variation in the modulus of the lower layers.

A Poisson's ratio of 0.35 will be assigned to all layers above the subgrade, and a ratio of 0.4 will be assigned to the subgrade.

PREDICTION OF LAYER MODULUS VALUES

The CHEVDEF program was used to predict modulus values for the 15 PTRF test items. Table 8 presents the results. Layer 1 includes all the AC material, and the modulus value for this layer was taken from the 16-Hz relationship in Figure 3. The pavement temperature was computed from the surface temperature plus the previous five-day mean. 13

Basins predicted from the program were not plotted against the measured basins, but the small differences can be seen in the column entitled "Absolute Sum of Differences in Deflections." In each case, this is the sum of the differences in four deflections.

Table 6

Reproducibility of CHEVDEF Program for a Thick Section

with Variable Deflection Distances

	Pred for	Predicted Modulus Values, for Cited Layer Thickness,	s Values, p Thickness,	psi, in.				
	떠	디	EJ.	되		Computed Deflection, mils	ction, mil	S
	1.5	7	8	226.5	$^{\Delta_1}$	Δ2	Δ3	$\Delta_{\mathbf{L}}$
						Distance,	e, in.	
First case:					0	6	18	30
Correct	200,000	350,000	η 5, 000	15,000	7.488	6.504	268.4	3.535
Assumed	300,000	400,000	000,09	20,000				
Range (min-max)	(100,000- 400,000)	(200,000-	(30,000-	(10,000-				
Final	175,264	367,258	45,721	15,021	7.4880	6.5039	4.8918	3.5349
Second case:					4.5	12	24	36
Correct	200,000	350,000	η2,000	15,000	7.280	5.734	4.182	2.970
Assumed	300,000	1,00,000	000,09	20,000				
Range (min-max)	(100,000- 400,000)	(200,000-	(30,000-	(10,000-				
Final	198,498	352,192	44,808	15,006	7.2798	5.7340	4.1821	2.9700
Third case:					6	18	30	42
Correct	200,000	350,000	45,000	15,000	6.504	768.4	3.535	2.497
Assured	300,000	η00,000	000,09	20,000				
Range (min-max)	(100,000- 400,000)	(200,000-	(30,000-	(10,000-30,000)				
Final	197,002	357,639	45,586	15,007	6.5033	4.8913	3.5347	2,4969

Note: 1 psi = 763 kg/m^2 ; 1 in. = 2.54 cm; 1 mil = 25.4 microns.

Table 7

Reproducibility of the CHEVDEF Program

for a Section with a Stiff Layer

	,							
	Prec	Fredicted Modulus Values, psi,	is Values, r	si,	Comp	Computed Deflections, mils.	ctions, n	1118.
	IOL	lor Cited Layer Thickness, in.	Thickness,	in.	at	at Cited Distance, in.	stance, ir	
	ન	ਟ ਜ	ы Ж	Ħ,	ړ۵	A2	۵	7
	5.0	8.0	8.0	219.0	4.5	12	24	36
Correct	300,000	1,000,000	45,000	10.000	6.371	5 1, 37	γ. αΟΣ	6
•				2006	1 7 • 0	101.	2,000	2.071
Assumed	200,000	1,500,000	000,09	15,000	4.9629	4.0108	3,3981	2.6983
Range (min-max)	(100,000-	(500,000-	(30,000-	(5,000-				,
	400,000)	2,000,000)	700,000)	20,000)				
Final	584,249	1,148,323	33,730	10,207	6.3562	5.4204	5.4204 4.6799	3.8040

Note: 1 psi = 703 kg/m²; 1 in. = 2.54 cm; 1 mil = 25.4 microns.

Figure 16. Effect of varying Poisson's ratios $(v_1, v_2, v_3, \text{ and } v_4)$ on predicted modulus values (1 ksi = 6.89 MPa)

Table 8

Predicted Modulus Values for FTRF Items from CHEVDEF

1 1	: d				· 0·	. о	g,	ı ₂ ,	и,	,.	u ·		. 1	×4.	141	4	X, 2
el engine	for PAVEVA	181	æ.	13.63	26.73	9,600	910°7	1) 11 11 11	55	0.47	41,61	en en	;; ;;	17,766	18.01	15,46	326*21
	Fob + I		40.05	47.546	51,759	59,043	42,972	45,700	31,669	39,852		1,9,893	1,620 13,273	906.61	51,935	627,433	59,432
1	Slope	w	- 4.334	- 5.158 47.546	- 1,560 51,759	- 8,584	276,24 951,912	23.754 49£.E -	- 785	- 2,769	- 4,290	- 4,630	- 4,620	- 3,015	- 3,055	- 4,307	- 7,358
Subbase	Buik Stress,	psi	10.67	7.363	7.137	7.201	2.325	5.819 8.619	4.119	5.018 6.674	8.68c 12.63	5.120	4.074	5.809 12.86	5.868	5.466	5.757
	Pri	چرا ا	7.5	2. ? 3. 30	5. 4. 6. 6.	3.52	0.76	3.19	2.23	3.62	8. F.	2.33	92.1	3.27	2.38	3.16	2.09
		T R	-0.036.5	0.2828	0.7890	0.6177	0.3645	0.7802	5.08991 5.2996	0.02184 0.02804	0.8642	1.347	0.5103 0.6797	0.9301	5.659E 5.929	0.6791 5.8371	0.8203
	Subgrac	,>	2.019	2.573	3.381	3.589	1.126	2.837 4.237	2.316	2.698 3.651	1.049 5.867	3.718	1.900	4.338 6.370	3.037	2.838	2.308
Absolute Sum of	Differences in	Deflections, \$	13.3461 8.6555	2.049 3.442	8.0057 14.7086	13.9810 10.9942	9.5409 8.0600	8.3136 9.5814	14,1059 5,5151	3.1929 4.8529	15.4879 4.3656	9.3311 25.7044	6.4854 1.0477	16.9104 19.5240	7.6956 7.1449	7.0849	4.9405 9.9899
	No. of	Iterations	7 5	~ ~	ผค	ოო	7.5	o, m	N N	o m	m 02	ณ ค	ณณ	ma	3 1	13	00
	PSI	13	11	11	11	35,254 28,827	30,667 25,391	38,803 35,001	1.1	11	1 1	38,916 34,615	36,852 34,405	39,631 34,526	14,664 10,723	46,135	44,071 36,733
	s Values	m	23,387	35,733 30,523	47,717 14,445	6,800	13,879 16,683	8,783	29,920 29,388	32,441 29,619	35,889 28,814	5,653	20,717	7,723 6,834	8,043	7,933 9,310	7,20h 6,665
	Fredicted Modulus Values	2	40,446	22,040 21,750	15,681	79,289 79,289	3,600,000	250,000 174,367	44,658 28,149	70,887 67,898	12,142	500,000 348,856	3,201,569	75,750	69,430 41,887	61,136	98,41,3 49,436
	Fresi		345,255 500,060	163,548 396,019	437,218 380,000	215,000	205,000 205,000	231,000 231,000	475,300 475,300	769,744	24 9, 007 19 6, 830	341,000 341,000	3 80, 000 380,000	432,000 132,000	1,30,000 1,30,000	535,000	628,000 628,000
	2407		5555 5555	2005 7606	5005 7506	7000 7000 7000	7000 7000	7000	5006 7006	5060 7000	7000 7000 7000	5000 7000	5000 7000	5000 7000	500C 7000	500C 7000	5,000 7,000
	;	B	4	끡	N.	er)	.3	υN	S.	7	ಎ	≪	'n	O	ш	u.	·σ

Standard Deviation = 5,73-

Mean = la, E.

The stress produced in the subgrade by the Model 2008 Road Rater may not be the stress associated with the design aircraft load. To account for this, two loads were analyzed (5000 and 7000 lb). The modulus values and stresses (vertical, longitudinal, and radial) at the top of the subgrade were calculated for each load level. With these values, a relationship between the modulus and the deviator stress can be developed for stress-dependent subgrades. Table 8 also shows the slope of the line and the intercept, as well as the bulk stress at the top of the subbase layer. There appears to be no relationship to the laboratory results for these values. The values of E for the granular layer are values that satisfy the model deflection basin. The granular material without a binder has very few load transfer properties through bending. Therefore, the model predicted lower modulus values. Associated with the low modulus value is a high vertical strain in that layer, which is considered a problem in using the layered elastic theory to model granular materials.

DETERMINATION OF SUBGRADE MODULUS FOR EVALUATION

Results from the CHEVDEF program give the relationship for the deviator stress and the modulus for the subgrade materials in the form

$$E = S\sigma_D + I$$

where

E = subgrade modulus

S = slope

 σ_{D} = deviator stress

I = intercept

It is known from Hooke's Law and by definition for resilient modulus that

$$E = \frac{\sigma_D}{\epsilon}$$

where ϵ represents the strain. By substituting and rearranging

 $E = SE\varepsilon + I$

or

$$E = \frac{I}{1 - S\epsilon}$$

If a limiting vertical compressive strain is selected, the modulus of the subgrade can be calculated. For comparisons used in this study, a value of 0.0006 in./in. was selected. This value was taken from an average line drawn on Figure 17 and represents 500,000 repetitions or 25,000 arrival/departures per year for 20 years. The equation for the average line is given as

$$\epsilon_{\mathbf{v}} = \mathbf{A}\mathbf{N}^{\mathbf{B}}$$

where

A = 0.0063548

N = number of strain repetitions

B = -0.17985

The modulus values in Table 9 associated with that strain level will be used for the evaluation of these pavements.

COMPARISON OF SUBGRADE MODULUS VALUES

The design modulus can also be computed from laboratory resilient modulus test results as outlined in Appendix A. The best-fit line for deviator stresses between 5 and 12 psi was calculated and then presented in Table 9. A comparison of the mean subgrade modulus values from the CHEVDEF program analysis (14,201 psi) to the laboratory results (12,864 psi) seems very reasonable.

Another comparison was made to the subgrade strength parameters derived from the DSM method reported by Green and Hall. The PTRF facility was tested with the WES 16-kip vibrator at the same time that testing was conducted with the Model 2008 Road Rater. Table 10 summarizes results of the DSM evaluation. The subgrade strength factor is the equivalent of the design CBR for the subgrade. The factor is calculated as the CBR required to support a single-wheel load with a 254-sq-in. contact area for 1200 annual departures. The load on the wheel is determined by a correlation with the measured DSM. The relationship of 1500 times CBR was used to compare the design modulus values for the DSM method and for the layered elastic procedure (Figure 18). Except for two items (PTRF items 4 and B) that had very low deflections and high DSM's due to stabilized layers, subgrade strength design parameters approximate each other.

Figure 17. Comparison of subgrade strain criteria (1 in. = 2.54 cm) (after Barker and Brabstonl $^4)$

Table 9

Deviator Stress - Resilient Modulus

Relationships from Laboratory Tests

Sample No.	'Type Sample	Slope S	Intercept I	Design E* psi
I-1	Remolded	-1279	18,428	10,424
I-2	Remolded	-1052	15,632	9,585
II-1	Undisturbed	-1181	20,811	12,182
11-2	Undisturbed	- 932	22,581	14,484
III-1	Remolded	-3342	45,998	15,305
III-2	Remolded	-1049	15,089	9,261
III - 3	Undisturbed	-1773	38,808	18,804

Mean = 12,864

Standard Deviation = 3,512

Note: 1 psi = 703 kg/m^2 .

Table 10

DSM Evaluation of the PTRF

	Temperature	C11		ble Gross
Danta	Corrected	Subgrade		Load, kips
PTRF	DSM	Strength	254 sq-in.	127 sq-in.
Item*	<u>kips/in.</u>	Factor	Single Wheel**	Single Wheelt
1A	1210	6.95	11.3	86.8
1B	1008	5.59	92.7	
				79.9
2	1331	18.97	122.4	103.8
3	813	11.79	74.7	58.3
4	2286	26.4	210.3	181.9
5	863	9.58	79.4	61.6
5 6	3.542	15.9	141.9	116.8
7	1254	15.2	115.4	96.9
8	657	9.05	60.4	45.5
Α	605	11.1	55.7	40.2
В	1634	25.6	150.3	131.9
C	661	8.85	60.8	45.5
E	708	6.49	65.1	48.2
F	859	9.5	79.0	61.3
G	689	9.15	63.3	47.5

Note: 1 kip = 4.448 kN; 1 kip/in. = 1.75 kN/cm; 1 sq in. = 6.45 sq cm.

^{*} Based on strain level of 0.0006 in./in.

^{*} See Table 2 for a description of these pavements.

^{** 1,200} annual departures, 20-year life.

^{† 25,000} annual departures, 20-year life.

Figure 18. Comparison of subgrade modulus by the DSM and layer elastic method (1 ksi = 6.89 MPa)

EVALUATION OF ALLOWABLE AIRCRAFT LOADS

For the evaluation of the allowable aircraft loads, the PAVEVAL computer program reported by Weiss³ was used. For flexible pavements, this program calculates the vertical compressive strain at the top of the subgrade and the tensile strain at the bottom of the AC layer. These strains are compared to the limiting strain criteria reported by Barker and Brabston. ¹⁴ For rigid pavements, the limiting tensile stress in terms of the number of load (stress) repetitions from Parker et al. ¹⁵ is considered as

$$\sigma_{RL} = \frac{R}{A + B \log (cov)}$$

where

 σ_{RL} = limiting value of tensile stress, psi

R = flexural strength, psi

A = 0.58901

B = 0.35486

cov = number of coverages (The number of coverages is determined by dividing the number of aircraft departures by the departure-to-coverage ratio. The ratio used for single-wheel gears was 7.94 and for dual-wheel gears was 5.2.)

Example inputs and outputs for evaluation of light aircraft allowable loads on rigid and flexible pavements are given in Appendix C. A comparison of the allowable gross loads for the PTRF items was made between the DSM method and the layered elastic procedure (Figure 19). For comparison purposes, the design loads were calculated for a single-wheel aircraft with 127-sq-in. contact area and 25,000 annual departures.

Figure 19. Comparison of allowable gross aircraft loads from the DSM and layered elastic methods (1 kip = 4.448 kN)

For the layered elastic evaluation, the modulus of the AC was selected as 770,000 psi, which corresponds to the 70°F temperature in Figure 3. The modulus of the subbase and base course layers (E2 in three-layer items, and E2 and E3 in four-layer items) were taken from the 7000-lb load in Table 8.

The allowable loads calculated from the DSM method are generally higher than those calculated using PAVEVAL. The controlling strain is shown in Table 11 for each of the PTRF items. The lower allowable loads for the layered elastic evaluations are probably due to the tensile strain controlling and being based on the initiation of a crack in the bottom of the AC rather than the crack propagating through the AC to the surface as was the case in the DSM evaluation (CBR Design System).

Table 11
Allowable Gross Aircraft Loads
from PAVEVAL

	Allowable Gross	Controlli	ng Strain
PTRF	Aircraft Load	Vertical	Tensile
Item	kips	Subgrade	AC
.1A	54.7		Х
1B	44.2		Х
2	52.6		X
3	37.9		Х
4	92.6	X	
5	82.1	X	
6	77.9		X
7	75.8		Х
8	44.2		Х
Α	61.1	Х	
В	120.0	Х	
С	23.2		х
E	27.4		X
F	31.6		X
G	31.6		X

Note: 1 kip = 4.448 kN.

A limited amount of testing was conducted on rigid pavements to verify the applicability of this procedure. Tests with the Model 2008 Road Rater were conducted on a portland cement concrete (PCC) road with

the pavement structure as shown in Figure 20. Laboratory resilient modulus tests were not conducted on the subbase but were conducted on the subgrade material (Figure 21).

Table 12 presents the CHEVDEF program results for this rigid pavement. The subgrade modulus selected for evaluation for rigid pavements is the modulus that is associated with a 5-psi deviator stress 15 and is calculated directly from the slope and intercept derived from the deviator stress-modulus relationship for the 5000- and 7000-lb loads.

Also shown in Table 12 is the modulus for 5-psi deviator stress from the laboratory resilient modulus test. CBR tests were taken to depths of 30 in. The sample taken from the 30- to 45-in. depth indicated a higher strength material (Figure 20). Therefore, the predicted subgrade modulus seems to be a reasonable estimate of the subgrade strength.

Figure 21. Results of resilient modulus tests on the PCC pavement subgrade material (1 psi = $703~{\rm kg/m}^2$)

d > 12.5 PSI

Mr = 5550 PSI

-K2

A PSI

DEVIATOR STRESS,

4000+

SAMPLE FOR RESILIENT MODULUS TESTING WAS TAKEN FROM DEPTH 30 TO 45 INCHES.

NOTE

Figure 20. Pavement structure and test results on PCC pavement (1 in. = 2.54 cm; 1 psi = 703 kg/m²)

Table 12

Predicted Modulus for PCC Pavement

Load Yalues, Esi Es Es Esi Es Esi Esi Esi Esi Esi Es
--

Note: 1 lbf = h. kk8 N; 1 psi = 703 kg/m².

NONDESTRUCTIVE EVALUATION PROCEDURE

GENERAL

The procedure outlined in this section is for both rigid and flexible pavements and is based on a layered elastic model that characterized multilayered pavement systems. The layer strength parameters are computed from field in situ measurements. The strength parameters will be input into an evaluation program that is designed to handle multiwheel aircraft at varying traffic levels. The output will be computed as the allowable load for a 20-year design life pavement. The evaluation will be valid for conditions existing at the time of test and will not account for changes due to such factors as frost action or moisture in the subgrade. These factors should be accounted for through conventional procedures.

NONDESTRUCTIVE TESTING EQUIPMENT

The need for a device with variable loading characteristics is required to describe the nonlinear characteristics of the subgrade material. Laboratory resilient modulus tests would be required to describe these nonlinear characteristics when the description cannot be derived from the NDT data.

The NDT device must output a minimum of three deflections of which one is measured near the applied load and the others are spaced to a distance of at least 36 in. from the applied load. The number of deflection measurements limits the number of variable modulus layers that can be analyzed with this procedure. It is recommended that the magnitude of the first deflection (that deflection measured nearest to the applied load) be at least 0.2 mil.

DATA COLLECTION

PAVEMENT INFORMATION

Before evaluating a light aircraft pavement, information as to pavement types, layer thicknesses, and layer types must be derived from construction records or from destructive tests (cores or test pits). This information is required for the evaluation of allowable load as well as for the determination of NDT locations. If test pits or cores are

required, these tests should be performed after the NDT. Areas of high and low deflections should be included with areas selected through a conventional sampling procedure to identify the causes of these unique NDT responses. Rigid pavement cores or beams should be tested for flexural strength.

The pavement condition should be surveyed to determine the areas and types of distress. It is not within the scope of this procedure to outline a detailed condition analysis. Since material properties are affected by water, frost, and primarily environmental conditions, it may be necessary to reduce the strength parameter for anticipated freeze/thaw conditions, alligator cracking in flexible pavements, and the presence of joints and cracks in rigid pavements.

TEMPERATURE DATA

Temperature data are required for AC pavements to evaluate the pavement properties at the time of testing and the ability of the pavement system to support future operations. The pavement temperature during the time of testing is determined at the mid-depth of the AC layer, the pavement surface, ambient temperature, and the previous five-day mean air temperature from Figure 22. ¹³ The pavement surface temperature should be measured at one-hour intervals during the period of testing. The mean air temperature can be obtained from the nearest office of the National Oceanographic and Atmospheric Administration.

To evaluate the pavement system for future operations, the average daily maximum temperature and average daily mean temperature is needed for the hottest months and the spring thaw months. These data can also be obtained from the nearest office of the National Oceanographic and Atmospheric Administration.

NDT TEST DATA

NDT should be conducted at 100-ft intervals alternating to either side of the center line in the wheelpaths on flexible pavements. Rigid pavement tests should be conducted in the slab center also alternating to either side of the feature center line. A minimum of five tests should be conducted in each pavement type. Parking aprons should be

Figure 22. Prediction of flexible pavement temperatures $(1^{\circ}F = -17^{\circ}C)$

tested on a 200-ft grid system. Testing should not be conducted when the pavement or subgrade is frozen.

The NDT device should be operated at the frequency that produces the best signal response. For the Model 2008 Road Ruter, this frequency is 15 Hz. Deflection basin data should be collected at the maximum force output of the device and at a force level of 50 to 75 percent of the maximum force output.

DETERMINATION OF LAYER MODULUS VALUES

The CHEVDEF program provides a tool with which the modulus values of up to four layers can be predicted. The CHEVDEF program input guide, typical input, and program listing are furnished in Appendix B. Sensitivity studies presented earlier in this report showed that the moduli of the subgrade and other lower layers in the pavement system reproduce well even when the surface moduli may differ. Also since the model assumes a uniform pressure and the Model 2008 Road Rater applies a rigid plate to the pavement, it is recommended that the modulus values of the surface layer be assigned as described below.

For flexible pavements, the modulus of the AC should be determined from Figure 3. The pavement temperature can be computed from the surface temperature plus the previous five-day mean air temperature (Figure 22). The depth should be the midpoint of the AC thickness.

Table 13 gives approximate ranges for the modulus of the pavement materials. These ranges represent very broad limits that should be compressed for the CHEVDEF program. For example, if a pavement with a cement-stabilized base is evaluated and the traffic history indicates very little heavy traffic has been applied, a range for the stabilized base should be selected between 600,000 and 1,500,000 psi.

NDT results should be analyzed by plotting the number one sensor deflection versus the distance along the feature. Pavement areas should be divided according to pavement types and pavement deflections. For each area, each deflection of the basin should be averaged to determine the mean deflection basin.

$$\frac{\Sigma D_1}{n} = \overline{D_1}$$
; $\frac{\Sigma D_2}{n} = \overline{D_2}$; etc.

where

 D_1 = deflection from number one sensor

n = number of tests in particular items

 \overline{D} = deflection to be used for evaluation

The mean deflection values for each pavement area should be input to CHEVDEF in mils.

Table 13

Typical Ranges for Modulus Estimates

and Poisson's Ratio Values for Pavement Layers

Material	Range of Modulus	Assigned Value of Poisson's Ratio
*AC PCC	100 - 1000 4000 - 6000	0.35 0.15
Untreated base	2 - 160	0.35
Treated base	8 - 2000	0.35
Subgrade	2 - 37	0.4

Note: 1 psi = 703 kg/m^2 .

In analyzing the results from the CHEVDEF program, it is important to check the predicted modulus for a layer against the limit. If the modulus does hit a limit, the program should be rerun modifying the limits to include the predicted E disregarding boundary conditions (see Appendix B, Example Output).

The highest load should be evaluated first with the CHEVDEF. The values for the modulus for the upper layers obtained from this run may be used for constant values when running the lower load to determine the relationship of stress versus modulus for the subgrade. For example, if the pavement contains three layers, consisting of AC, granular base, and subgrade, the modulus for the AC and granular layer as determined from the initial run of the high load should be held constant at the values for the run at the lower load.

Once the modulus values and deviator stress are obtained, the following equations are used to describe the nonlinearity of the subgrade:

^{*} Temperature- and frequency-dependent.

$$S = \frac{E_1 - E_2}{\sigma_{D7} - \sigma_{D5}}$$

and

$$I = E_1 - S\sigma_{D7}$$

where

S = slope

 E_1 = predicted modulus for high load (7000 lb for 2008 Road Rater)

 E_{o} = predicted modulus for low load (5000 lb for 2008 Road Rater)

 $\sigma_{\mathrm{D7}}^{}$ = deviator stress (vertical - radial stress) for 7000-1b load

 σ_{DS} = deviator stress (vertical - radial stress) for 5000-1b load

I = intercept

After determining the S and I for the equation above, calculate the limiting strain for AC pavement from Figure 17 based on the design life of the pavement, and compute the design subgrade modulus from the equation given below:

$$E = \frac{I}{1 - S\epsilon}$$

where

E = design subgrade modulus, psi

 ε = limiting strain

For rigid pavements, the design subgrade modulus will be selected at a deviator stress of 5 psi, or

$$E = 5S + I$$

DETERMINATION OF ALLOWABLE AIRCRAFT LOADS

The PAVEVAL program presented by Weiss³ will be used to predict allowable aircraft loads. Example inputs for both rigid and flexible pavements are shown in Appendix C. Aircraft characteristics¹⁶ for light aircraft pavements are:

Type	Gross Max/Load kips	Departure to Coverage Ratio	Contact Area sq in.	Wheel Spacing, in.
Single	20	7.94	127	
Dual	30	5.2	75	18

Note: 1 kip = 4.448 kN; 1 sq in. = 6.45 sq cm; 1 in. = 2.54 cm.

The modulus for the AC surface layer should be determined based on a design pavement temperature for input to Figure 3. The method of selecting the design pavement temperature for this evaluation is taken from Brabston et al. ¹⁷ Witczak ¹⁸ presents a relationship between pavement temperature and air temperature (Figure 23) that can be used to determine the design pavement temperature if the corresponding design air temperature is known. For this design procedure, the design air temperature for a particular locale is determined by averaging the average daily maximum

Figure 23. Relationship between design pavement temperature and design air temperature ($1^{\circ}F = -17^{\circ}C$)

temperature and the average daily mean temperature for the design month. Generally, the set of average temperatures will be necessary only for the hottest month indicated in the reporting period.

This method of calculating a design modulus for the AC layer is conservative. Other procedures have been reported by Barker and Brabston and Koole. Modulus values of those layers of base and subbase should be selected from the CHEVDEF output for the high-load (7000-1b) data. These values approximate the stress of the light aircraft and should be representative for the behavior when an elastic model is used.

The PAVEVAL program has the capability of calculating AC and PCC overlays. These procedures are available in the Weiss³ report but were not evaluated for use in light aircraft pavement design as a part of this study. The computer program listed in Appendix B may be reproduced for use by any interested party.

CONCLUSIONS AND RECOMMENDATIONS

This study has resulted in the development of an evaluation procedure for light aircraft pavements based on a layered elastic model. Nondestructive pavement test results are used to predict the layer strength parameters that can be input into a layered elastic model to predict the allowable load-carrying capacities of both rigid and flexible pavements containing either stabilized or nonstabilized layers.

The deflection basins measured from the NDT device at two force levels are used for input to a system that predicts the nonlinear stress-dependent behavior of the subgrade material. Results compare favorably with laboratory resilient modulus tests.

It is recommended that this procedure be adopted for use in evaluating light aircraft pavements. Further study should be conducted to make this approach applicable to air carrier airport pavements. The use of a finite element code for the modeling of a rigid plate and the non-linear behavior of the granular materials should be included in future studies.

REFERENCES

- 1. Bush, A. J. III, "Nondestructive Testing for Light Aircraft Pavements; Phase I, Evaluation of Nondestructive Testing Devices," Report No. FAA-RD-80-9-I, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1980.
- 2. Green, J. L., and Hall, J. W., Jr., "Nondestructive Vibratory Testing of Airport Pavements; Vol 1, Experimental Test Results and Development of Evaluation Methodology and Procedure," Report No. FAA-RD-73-305-I, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
- 3. Weiss, R. A., "Pavement Evaluation and Overlay Design Using Vibratory Nondestructive Testing and Layered Elastic Theory; Vol 1, Development of Procedure," Report No. FAA-RD-77-186-I, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1980.
- 4. Yang, N. C., "Nondestructive Evaluation of Civil Airport Pavements; Part I, Nondestructive Test Frequency Sweep Method," Report No. FAA-RD-76-83, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1976.
- 5. Treybig, H. J. et al., "Design of Asphalt Concrete Overlays Using Layer Theory," Proceedings, Fourth International Conference on Structural Design of Asphalt Pavements, Vol 1, University of Michigan, Ann Arbor, Mich., 1977.
- 6. Koole, R. C., "Overlay Design Based on Falling Weight Deflectometer Measurements," <u>Transportation Research Record No. 700</u>, National Academy of Sciencies, Transportation Research Board, Washington, D. C., 1979.
- 7. Anani, B. A., "The Evaluation of In Situ Elastic Moduli from Surface Deflection Basins of Multilayer Flexible Pavements," Ph.D. Thesis, Pennsylvania State University, University Park, Pa., 1979.
- 8. Sharpe, G. W. et al., "Pavement Evaluation by Using Dynamic Deflections," <u>Transportation Research Record No. 700</u>, National Academy of Sciencies, Transportation Research Board, Washington, D. C., 1979.
- 9. Ullidtz, P., "Overlay and Stage by Stage Design," <u>Proceedings</u>, <u>Fourth International Conference on Structural Design of Asphalt Pavements</u>, Vol 1, University of Michigan, Ann Arbor, Mich., 1977.
- 10. Chou, Y. T., "An Iterative Layered Elastic Computer Program for Rational Pavement Design," Report No. DOT/FAA-RD-75-226, Department of Defense, Office, Chief of Engineering, U. S. Army, and Department of Transportation, Federal Aviation Administration, Washington, D. C., 1976.

- 11. Kingham, R. I., and Kallas, B. F., "Laboratory Fatigue and Its Relationship to Pavement Performance," <u>Proceedings, Third International Conference on the Structural Design of Asphalt Pavements</u>, Vol 1, University of Michigan, Ann Arbor, Mich., 1972.
- 12. Fossberg, Per Egil, "Load-Deformation Characteristics of Three-Layer Pavements Containing Cement-Stabilized Base," Department of Civil Engineering, Institute of Transportation and Traffic Engineering, University of California, Berkley, Calif., 1970.
- 13. Asphalt Institute, "Asphalt Overlays and Pavement Rehabilitation," Manual Series No. 17, College Park, Md., 1969.
- 14. Barker, W. R., and Brabston, W. N., "Development of a Structural Design Procedure for Flexible Airport Pavements," Report No. FAA-RD-74-199, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
- 15. Parker, Frazier, Jr., et al., "Development of a Structural Design Procedure for Rigid Airport Pavements," Report No. FAA-RD-77-81, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1979.
- 16. Ladd, D. M. et al., "Structural Design of Pavements for Light Aircraft," Report No. FAA-RD-76-179, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1976.
- 17. Brabston, W. N., Barker, W. R., and Harvey, G. G., "Development of a Structural Design Procedure for All-Bituminous Concrete Pavements for Military Roads," Technical Report S-75-10, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., 1975.
- 18. Witczak, M. W., "Design of Full Depth Asphalt Airfield Pavements," Research Report 72-2 (RR72-2), Asphalt Institute, College Park, Md., 1972.
- 19. Department of the Army, Office, Chief of Engineers, "Soil Sampling," Engineering Manual FM 1110-2-1907, Washington, D. C., 1972.
- 20. Department of the Army, Office, Chief of Engineers, "Laboratory Soils Testing," Engineering Manual EM 1110-2-1906, Washington, D. C., 1970.

APPENDIX A: LABORATORY PROCEDURE FOR DETERMINING THE RESILIENT MODULUS OF SUBGRADE SOILS*

The objective of this test procedure is to determine a modulus value for subgrade soils by means of resilient triaxial techniques. The test is similar to a standard triaxial compression test, the primary exception being that the deviator stress is applied repetitively and at several stress levels. This procedure allows testing of soil specimens in a repetitive stress state similar to that encountered by a soil in a pavement under a moving wheel load.

DEFINITIONS

The following symbols and terms are used in the description of this procedure:

- $\underline{\mathbf{a}}$. $\sigma_1 = \text{total axial stress}$.
- \underline{b} . σ_3 = total radial stress; i.e., confining pressure in the triaxial test chamber.
- \underline{c} . $\sigma_d = \sigma_1 \sigma_3 = \text{deviator stress}$; i.e., the repeated axial stress in this procedure.
- \underline{d} . ε_1 = total axial strain due to σ_d .
- \underline{e} . $M_R = \sigma_d/\epsilon_{R_1} = \text{resilient modulus}$.
- $\underline{\mathbf{f}}$. $\theta = \sigma_1 + 2\sigma_3 = \sigma_d + 3\sigma_3 = \text{sum of the principal stresses in the triaxial state of stress.}$
- g. $\sigma_1/\sigma_3 = \text{principal stress ratio.}$
- <u>h</u>. Load duration = time interval over which the specimen is subjected to a deviator stress.
- <u>i</u>. Cycle duration = time interval between successive applications of a deviator stress.

SPECIMENS

Various diameter soil specimens may be used in this test, but the recommended specimen diameter is 2.5 to 3.0 in. or approximately four times maximum aggregate size. The specimen height should be at least twice the diameter. Undisturbed or laboratory molded specimens can be used. Procedures for obtaining undisturbed soil specimens are given in

^{*} This procedure is taken from the report by Barker and Brabston. 14

Engineer Manual 1110-2-1907, "Soil Sumpling." Methods for laboratory preparation of molded specimens and for back-pressure saturation of specimens, if required, are presented in EM 1110-2-1906, "Laboratory Soils Testing." 20

EQUIPMENT

TRIAXIAL TEST CELL

A triaxial cell suitable for use in resilience testing of soils is shown in Figure A-1. This equipment is similar to most standard cells, with the exceptions of being somewhat larger to facilitate the internally mounted load and deformation measuring equipment and having additional outlets for the electrical leads from the measuring devices. For the type of equipment shown, air or nitrogen is used as the cell fluid.

The external loading source may be any device capable of providing a variable load of fixed cycle and load duration, ranging from simple cam-and-switch control of static weights or air pistons to a closed-loop electrohydraulic system. A load duration of 0.2 sec and a cycle duration of 3 sec have been found to be satisfactory for most applications. A square-wave load form is recommended.

DEFORMATION MEASURING EQUIPMENT

The deformation measuring equipment consists of linear variable differential transducers (LVDT's) attached to the soil specimen by a pair of clamps. Two LVDT's are used for the measurement of axial deformation. The clamps and LVDT's are shown in position on a soil specimen in Figure A-1. Details of the clamps are shown in Figure A-2. Load is measured by placing a load cell between the specimen cap and the loading piston as shown in Figure A-1.

Use of the type of measuring equipment described above offers several advantages:

- a. It is not necessary to reference deformations to the equipment, which deforms during loading.
- <u>b</u>. The effect of end-cap restraint on soil response is virtually eliminated.

Figure A-1. Triaxial cell

e. Any effects of piston friction are eliminated by measuring loads inside the triaxial cell.

In addition to the measuring devices, it is also necessary to maintain suitable recording equipment. It is desirable to have simultaneous recording of load and deformation. The number of recording channels can be reduced by wiring the leads from the LVDT's so that only the average signal from each pair is recorded. The introduction of switching and balancing units permits use of a single-chamber recorder. However, this will not permit simultaneous recording.

ADDITIONAL EQUIPMENT

In addition to the equipment described above, the following items are also used:

- a. A 10- to 30-ton-capacity loading machine.
- <u>b</u>. Calipers, a micrometer gage, and a steel rule (calibrated to 0.01 in.).
- c. Rubber membranes, 0.01 to 0.025 in. thick.
- d. Rubber o-rings.
- e. A vacuum source with a bubble chamber and regulator.
- f. A back-pressure chamber with pressure transducers.
- g. A membrane stretcher.
- h. Porous stones.

PREPARATION OF SPECIMENS AND PLACEMENT IN TRIAXIAL CELL

The following procedure should be followed in preparing and placing specimens:

- a. In accordance with procedures specified in EM 1110-2-1906, 20 prepare the specimen and place it on the base-plate complete with porous stones, cap, and base and equipped with a rubber membrane secured with 0-rings. Check for leakage. If back-pressure saturation is anticipated for cohesive soils, procedures indicated in Appendix X to EM 1110-2-1906 for the Q-type triaxial tests should be followed. For purely non-cohesive soils, it will be necessary to maintain the vacuum during placement of the LVDT's. The specimen is now ready to receive the LVDT's.
- b. Extend the lower LVDT clamp and slide it carefully down over the specimen to approximately the lower quarter point of the specimen.
- c. Repeat this step for the upper clamp, placing it at the upper quarter point. Insure that both clamps lie in horizontal planes.

- d. Connect the LVDT's to the recording unit, and balance the recording bridges. This step will require recorder adjustments and adjustment of the LVDT stems. When a recording bridge balance has been obtained, determine (to the nearest 0.01 in.) the vertical spacing between the LVDT clamps and record this value.
- e. Place the triaxial chamber in position. Set the load cell in place on the specimen.
- <u>f.</u> Place the cover plate on the chamber. Insert the loading piston, and obtain a firm connection with the load cell.
- g. Tighten the tie rods firmly.
- h. Slide the assembled apparatus into position under the axial loading device. Bring the loading device to a position in which it nearly contacts the loading piston.
- i. If the specimen is to be back-pressure saturated, proceed in accordance with EM 1110-2-1906.
- j. After saturation has been completed, rebalance the recorder bridge to the load cell and LVDT's.

RESILIENCE TESTING OF COHESIVE SOILS

The resilient properties of cohesive soils are only slightly affected by the magnitude of the confining pressure σ_3 . For most applications, this effect can be disregarded. When back-pressure saturation is not used, the confining pressure used should approximate the expected in situ horizontal stresses, which will generally be on the order of 1 to 5 psi. A chamber pressure of 2 psi is a reasonable value for most testing. If back-pressure saturation is used, the chamber pressure will depend on the required saturation pressure.

Resilient properties are highly dependent on the magnitude of the deviator stress $\sigma_{\rm d}$. It is therefore necessary to conduct the tests for a range in deviator stress values. The following procedure should be followed:

- a. If back-pressure saturation is not used, connect the chamber pressure supply line and apply the confining pressure (equal to the chamber pressure). If back-pressure saturation is used, the chamber pressure will already have been established.
- <u>b</u>. Rebalance the recording bridges for the LVDT's, and balance the load cell recording bridge.
- e. Begin the test by applying 1000 repetitions of a deviator stress of not more than one-half the unconfined compressive strength.

- d. Decrease the deviator load to the lowest value to be used. Apply 200 repetitions of load, recording the recovered vertical deformation at or near the last repetition.
- e. Increase the deviator load, recording deformations as in Step d. Repeat over the range of deviator stresses to be used. It is recommended that 3, 5, 7, 12, 15, 17, 20, 22, and 25 jui be used.
- <u>f.</u> At the completion of the loading, reduce the chamber pressure to zero. Remove the chamber LVDT's and load cell. Use the entire specimen for the purpose of determining the moisture content.

The results of the resilience tests can be presented graphically as shown in Figure A-3 for the resilient modulus and in the form of a summary table such as Table A-1.

Figure A-3. Presentation of results of resilience tests on cohesive soils (1 psi = 703 kg/m^2)

Table A-1

Example Data Form for Recording Results

of Resilience Tests of Cohesive Soils

Date	Compaction Method Verrical Spacing Between LUDT Clamps - Anch Chamber Pressure - psi	Constants	Vertical LVDf	Load Cell	Coments	
Soil Specimen Weight	Initial Wt. of Container + Wer Soil - gas Final Wt. of Container + Wer Soil - gas Wt. Wer Soil Used	Soil Specimen Volume	Initial Area Ag in (inch) ² Volume Ag in (inch) ²	Wet Density - pof	I Saturation Dry Density - pof	
Soil Sample	Location Sample No. Specific Gravity	Soil Specimen Measurements	Top Diameter Middle Diameter Audreen	Membrane Thickness Net Disserve	Ht. Specimen + Cap + Base Ht. Cap + Base	Initial Length Lo

		-	 	 	 _	
MR = Od/ER1						
⁶ R1 1n/1n						
Vertical Defor- mation Inches						
Vertical LVDT Chart Reading						
ο d Ped						
Deviator Load 1bs						
Load Cell Chart Reading						

Note: 1 in. = 2.5 μ cm; 1 in. ² = 6. μ 5 cm; 1 in. ³ = 16.39 cm³; 1 pcf = 16.02 kg/m³; 1 psi = 703 kg/m²

RESILIENCE TESTING OF COHESIONLESS SOILS

The resilient modulus of cohesionless soils M_R is dependent upon the magnitude of the confining pressure σ_3 and is nearly independent of the magnitude of the repeated axial stress. Therefore, it is necessary to test cohesionless materials over a range of confining and axial stresses. (The confining pressure is equal to the chamber pressure less the back pressure for saturated specimens.) The following procedures should be used for this type of test:

- <u>a</u>. Use confining pressures of 5, 10, 15, and 20 psi. At each confining pressure, test at five values of the principal stress difference corresponding to multiples (1, 2, 3, 5) of cell pressure.
- <u>b</u>. Before beginning to record deformations, apply a series of conditioning stresses to the material to eliminate initial loading effects. The greatest amount of volume change occurs during the application of the conditioning stresses. Simulation of field conditions suggests that drainage of saturated specimens should be permitted during the application of these loads but that the test loading (beginning in Step <u>f</u> below) should be conducted in an undrained state.
- c. Set the axial load generator to apply a deviator stress of 10 psi (i.e., a stress ratio equal to 3). Activate the load generator and apply 200 repetitions of this load. Stop the loading.
- d. Set the axial load generator to apply a deviator stress of 20 psi (i.e., a stress ratio equal to 3). Activate the load generator and apply 200 repetitions of this load. Stop the loading.
- e. Repeat as in Step d above maintaining a stress ratio equal to 6 and using the following order and magnitude of confining pressures: 10, 20, 10, 5, 3, and 1 psi.
- f. Begin the record test using a confining pressure of 1 psi and an equal value of deviator stress. Record the resilient deformation after 200 repetitions. Increase the deviator stress to twice the confining pressure and record the resilient deformation after 200 repetitions. Repeat until a deviator stress of 5 times the confining pressure is reached (stress ratio of 6).
- $\underline{\mathbf{g}}$. Repeat as in Step $\underline{\mathbf{f}}$ above for each value of confining pressure.
- h. When the test is completed, decrease the back pressure to zero, reduce the chamber pressure to zero, and dismantle the cell. Remove the LVDT clamps, etc. Remove the soil specimen, and use the entire amount of soil to determine the moisture content.

Test results should be presented in the form of a plot of log $M_{\rm R}$ versus log of the sum of the principal stresses as shown in Figure A-1. Calculations can be performed using the tabular arrangement shown in Table A-2.

Figure A-4. Presentation of results of resilience tests on cohesionless soils (1 psi = 703 kg/m^2)

Table A-2

Example Date Form for Recording Results

<u>onless</u> Soils	Date	Compaction Method	Vertical Spacing Between LVDT Clamps - Inch	Constants	Vertical LVDT	Load Cell	Coments
of Resilience Tests of Cohesionless Soils	Soll Specimen Weight	Initial Wt. of Container + Wet Soil - gme	Finel Wt. of Container + Wet Soil - gms Wt. Wet Soil Used	Soil Specimen Volume	Initial Area A ₀ to (inch) ² Volume A ₀ ,0,	in (inch) ² Wet Denaity pof Water Content - 7	% Saturetion Dry Denaity - pef Void Ratio
ા	Soil Sample	Location	Specific Gravity	Soil Specimen Measurements	Top Hiddle Bottom Bottom	Average Mesbrane Thickness Net Diameter	Hr. Specimen + Cap + Base Hr. Cap + Base Initial Length Lo

''R = 04/6'R1 P81					
e _{RU}					
Vertical Defor- mation inch					
Vertical LVDT Chart Reading					
θ Bost					
93					
0d = 01 − 03 ps1					
Deviator Load 1bs.					
Load Cell Chart Reading					
Confining Load Cell Deviator Pressure Chart Load psi Reading lbs.					

Note: lin. = 2.5h cm; lin. $^2 = 6.45 \text{ cm}^2$; lin. $^3 = 16.39 \text{ cm}^3$; l pcf = 16.02 kg/m^3 ; l psi = 703 kg/m^2

A-11

APPENDIX B: CHEVDEF PROGRAM

INTRODUCTION

The CHEVDEF program takes measured deflections from a deflection basin with initial estimates and ranges of layer modulus and computes the modulus values that best describe the input deflection basin. A linearly layered elastic computer program originally developed by Chevron Oil Company is used as a subroutine to calculate the stress, strains, and deflections.

The information provided herein is as follows:

- a. Flowchart.
- b. Input guide.
- c. Example input.
- d. Example output.
- e. Program listing.

FLOWCHART

A flowchart describing the logic of the program is presented on the following page.

PROGRAM CHEVDEF (Matching of Pavement Deflections Using CHEVRON Layered Elastic Computer Program)

L	i	ne	7

LINENU NPROB

NPROB = Number of data sets

Line 2

Title 72 characters

Note: Line 2 through Line 13 are repeated for each data set.

Line 3

ND = Number of deflection reasings (maximum of 4)

RRD(i) i = 1, ND = Measured deflections in mils

Line 4

NL = Number of variable layers for which the modulus is to be determined (not to exceed the number of deflections)

TOL = Tolerance in percent for stopping programs (usually = 10)

MAXIT = Maximum number of iterations (usually = 3)

Line 5-1 through 5-NL (one line for each unknown modulus)

ILV(i) = System layer number for unknown modulus value i

EMIN(i) = Minimum allowable modulus for unknown modulus i

EMAX(i) = Maximum allowable modulus for unknown modulus

Line 6

Title at start of CHEVRON data 72 characters .

Line 7

				
LINENU	WGT	PSI	NOUTP	NPUN
L				<u></u>

WGT = Total load applied to pavement

PSI = Contact pressure of load

NOUTP = Control output : set = 0

NPUN = Control output : set = 1

Line 8 (continue to additional lines as necessary for all E's and V's)

					 			┥ .
	LINENU	ns	E(:)	V(i)	 	E(NS)	v(ns)	7
•								7

NS = Total number of layers in system

E(i) = Starting modulus for layers i = 1, NS

V(i) = Poisson's ratio for layers i = 1, NS

Line 9

HH(i) = Thickness of layer i = 1, NS-1

Line 10

iR = Number of radial offsets (set = ND)

RR(i) i = 1, iR = Distance to deflection readings

Line 11

iZ = Number of depth set = 1

ZZ(1) = Depth of deflection set = 0

Note: After determination of final modulus subgrade, CHEVRON is called for computation of stress, strains, and deflection at selected points. These soils should be the center of granular layers and the top of the subgrade material.

	LINENU	iR	RR(1)	RR(2)		RR(iR)	7
--	--------	----	-------	-------	--	--------	---

iR = Number of offsets (f iR = 0 returns for new data set)

RR(i) i = 1, iR = Distance to selected points

Line 13

iZ = Number of depth

ZZ(i) i = 1, iZ = Depth to selected points

Note: Run is now terminated or returned for new data.

For devices with two loaded areas, use total force
on one area and compute radial distances for Line 10.

EXAMPLE INPUT

An example input for the PTRF 1A item is listed below. Control cards preceeding input are for the Honeywell G635 Computer in the remote batch mode (CARDIN).

01000N(!) 020%!IDENT!ROSF300.CURTIS 030%!DPTION:FORTRAN 040%!USE!.GTLIT 050%!FORTY!XREF 060%:SELECTA:ROSF300/CHEVDEF 0708!EXECUTE 080\$!LIMITS!40,30K,,6K 090 010 1 100 020PTRF 1A RR2008 DEFL. (7000 LB) 110 030 4,5.908,4.433,3.067,1.933 120 040 3,10,3 130 050 1,20000,700000 140 060 2,20000,100000 150 070 3,10000,30000 160 080 CHEVRON 170 090 7000,27.508,0,1 180 100 4,500000,0.35,50000,0.35,20000,0.4,1000000,0.5 190 110 7.5,20.5,212 200 120 4,4.5,12,24,36 210 130 1,0 220 140 1,0 230 150 2,7.5,28 240%ENDJOB

EXAMPLE OUTPUT

An example output for the PTRF 1A item is provided on the following pages. The number of problems to be solved is $\underline{1}$.

020 PTRF 1A RR2008 DEFL. (7000 LB.)

NUMBER OF VARIABLE LAYERS AND TARGET DEFLECTIONS = 3

DEFLECT	ION READINGS	IN MILS		
POSITION NO:	1	2	3	4
DEFLECTIONS:	5.908	4.433	3.067	1.933
MEIGHTING FACTOR:	0.169	0.226	0.326	0.517

VARIABLE	SYSTEM	VALUE OF	VALUE OF	US
LAYER NO	LAYER NO	MAXMUM MODULUS	MINIMUM MODUL	
1	1	700000.0	20000.0	
2	2'	100000.0	20000.0	
3	3	30000.0	20000.0 10000.0	

◆◆◆◆◆◆080 START DATA FOR CHEVRON

THE PROBLEM PARAMETERS ARE

TOTAL LOAD	7000.00	LBS
TIRE PRESSURE	27.51	PSI
LOAD RADIUS	9 00	TN

LAYER NO. MODULUS		POISSONS RAT	ID THICKNESS	
1	50	500000.		7.50
5	5	0000.	0.350	20.50
3	2	20000.		212.00
4	100	0000.	0.500	SEMI-INFINITE
FOSITION 1 2 3 4	DEFLECTION 5.5500 4.2409 2.8706 2.0131	MEASURED 5.9080 4.4330 3.0670	DIFFERENCE 0.3580 0.1921 0.1964	% DIFF. 6.1 4.3 6.4

4.2409 4.4330 0.1921 4.3 2.8706 3.0670 0.1964 6.4 2.0131 1.9330 -0.0801 -4.1 ABSOLUTE SUM: 0.8265 20.9390 ARITHMETIC SUM: 12.6527 DATA FOR DEVELOPING EQUATION: FOR ITERATION: NO. 1

15]	LAYEP NO.	INITIAL MODULUS	CHANGED MDDULUC	DEFSET DITC.	DEI INITIAL	FLECTION: CHANGED	PEADIN
•••	1	500000.	20000.	4.50 12.00 24.00 36.00	5.550 4.241 2.871 2.013	14.501 5.428 3.023 2.102	5.908 4.433 3.067 1.933
•••	2	50000.	20000.	4.50 12.00 24.00 36.00	5.550 4.241 2.871 2.013	7.686 5.981 3.808 2.391	5.908 4.433 3.067 1.933
•••	3	20000.	10000.	4.50 12.00 24.00 36.00	5.550 4.241 2.871 2.013	7.507 6.037 4.609 3.542	5.908 4.433 3.067 1.933

PPEDICTED E DISPEGARDING BOUNDARY CONDITIONS 500060. 40304. 21130.

POSITION	DEFLECTION	MEASURED	DIFFERENCE	% DIFF.
1	5.8718	5.9080	0.0362	0.6
2	4.4794	4.4330	-0.0464	-1.0
3	2.9416	3.0670	0.1254	4.1
4	1.9892	1.9330	~0.0562	-2.9
	AB	SOLUTE SUM:	0.2642	8.6555
	ARI	THMETIC SUM:		0.7480
		AVERAGE:	0.0661	2.1639

THE FINAL MODULUS VALUES ARE

50	00060. DEFLECTIONS	40304. ARE IN TOLE		1000000	•	
R	Z		TANGENTIAL	RADIAL	SHEAR	BULK
0.	-7.5 STRE STRA DSPL		· · · · • · · · · · · · · · · · · · · ·		0. 0.	8.507E 01 5.103E-05
0.	7.5 STRE STRA DSPL		-8.452E-01 6.797E-05		0. 0.	-1.109E 01 -8.253E-05
0.	-28.0 STRE STRA DSPL			1.313E 00 3.871E-05	0. 0.	6.064E-01 4.51 4 E-06
0.	28.0 STRE STRA DSPL • END OF PRO	-9.621E-05 3.439E-03		1.701E-02 3.871E-05	0. 0.	-1.985E 00 -1.879F-05

```
HIT TERTET 600 DN - 11 16 26 HE 12,355 THERREL 6021
   DICTEM PEOPL
 OLD OF NEW-OLD CHEVDER
 OLD OF NEW-OLD
  DLD FILE? CHEMDER
 READY
 •LIIT
 100100
 0.000300
 000460
 000500
                                           THIS PROGRAM CONTAINS AN ITERATIVE PROCEDURE TO CALCULATE
                              MODULUS VALUES FOR UP TO 4 PAVEMENT LAYERS FROM THE DEFLECTION BASIN MEASUREMENTS. THE PROGRAM USES THE CHEVRON H - LAYER ELASTIC SYSTEMS PROGRAM AS A SUBROUTINE TO CALCULATE DEFLECTIONS FROM INITIAL AND ITERATIVE MODULUS VALUES.
 0.000 \pm 0.0
 000766
 0000000
 000900
 001000
 001100
 001200
 001300
                                                                    PROGRAM NAME: CHEVDER
 001400
 001500
                                                                    CODED BY: DR. WALTER R BARKER
 001600
                                                                    POINT OF CONTACT:
 001700
                                                                              ALBERT J. BUSH: III
 001200
 001900
                                                                              GEOTECHNICAL LABORATORY
                                                                              WATERWAYS EXPERIMENT STATION VICKSBURG. MISSISSIPPI 39180
 002000
 002100
 002200
                                                                    COMPUTER: WATERWAY: EXPERIMENT STATION: GE635
LANGUAGE: FORTRAN IV
 002300
002400
002500
                                                                    DATE COMPLETED: JULY 1980
                                                                    SPECIAL PEODIFEMENT: CARDIN: PEMOTE BATCH PROCESSING
002600
002700
                                                                    ITORAGE: DISC
002800
002900
 003000+++++
003100++++++
003200 *****
003300
0.03480
003500 *****
0.036\,00
00370
                             CALL FXORT(67.1.1.0)
0.0380
                           LOGICAL PECALC, PETTEP, CONTIN
00390
                           CHAPACTEP+80 TENT1
                           CHARACTER+4 CONPAR
00400
                           CHAPACTER IFUN+1(4-4)
00410
00420
                           INTEGER COUNTR
                           DIMENTION EL (4.8) - EMAN (4) - EMIN (4) - 1 (4.4) - A (4.4) - C (4) - B (4.4)
0.0430
                        3 + AK + 9 + +
06446
                                                                  ILV:4: NDF:4: IDF:4:4:
00450
                        2 MINAL ATEMP (10)
                          PERL MOTICINUSCTEMP (4) - RTEMP (4:4)
0046.0
00470
                        2 • ETOL • 4 • • DF (4 • 3) •
                                                                                    PRIMAN DITEL 44 4
                        CITEMPDER:4: PCT:4: ACCUM:2:
0.04 \otimes 0.
00490
                           COMMON OFF COUNTRYDER (4) + NEAYS
                                                   PMCDY AND 100 - 22:100 - E:50 - V:50 - HH:40 - H5:40 - 22:100 - E:50 - V:50 - HH:40 - H5:40 - A2:396 - A3:396 - 50 - B3:396 - 50 - C:396 - 50 - TITLE:200 - TE:T0:100 - B2:1000 - B:50 -
មិស្តីម៉ាម៉ា
00510
00520
0.0520
```

```
0.0550
             DATA CONPARK N
 00560
             PEAD:5.210: LINENU: NPROR
 00570
             WPITE (6.105) NEPDE
             DO 9999 NEP=1.NEPOB
 0.0580
 ព្រំប្រទីធារា
             MPITE (6, 1212) HPP
 ONEGO 9995 CONTINUE
 0.061.0
             PEAD:5.1000:TEXT1
             WPITE (6:200 TEXT)
 0.0620
 0.0630
             PEAD(5.210) LINEMU.ND. (PPD: I) . I=1.ND)
 0.0640
             BUM = 0.
 00650
             COUNTR=1
0.0660
          1 CONTINUE
00670
             1 TEP±0
00680
             PEAD(5:210) LINEMU, NL, TOL, MAXIT
0.0690
            DD 5 I =1.ND
            W(I) = 1./PPD(I)
00700
00710
          5 CONTINUE
00720
            DO 8 I=1.ML
00730
00740
            PEAD:5:210 LINENU:NW:EMIN(I):EMAX(I)
          S ILV(I)=NW
00750
            MRITE (6.600) NL
00760
            WRITE(6,619) (I.I=1,ND)
            WRITE(6,620) (RRD(I),I=1,ND)
00770
00780
            WRITE(6,621) (W(I),I≈1,ND)
00790
            WRITE (6,790)
0.0800
            WRITE (6,650)
00810
            DO 59 MS=1.NL
05800
            WRITE (6,660) MS, ILV (MS), EMAX (MS), EMIN (MS)
         59 CONTINUE
0.0830
00840
            CALL CHEVPON
            WPITE (6,830)
00850
            CONTIN = .TRUE.
00860
00870
             IUM = 0.
00380
             50MP = 0.0
            ASUM⇔0.0
00890
00900
            DD 9 I = 1 \cdot MD
00910
            ERR = PRD(I)-DEF(I)
00920
            PERC=(ERR/PRD(I))+100
00930
            IUM = SUM + ABS(ERR)
00940
            SUMP = SUMP + ABS(PERC)
00950
            ASUM = ASUM+PERC
00960
            WRITE (6,820,1,DEF(I),RPD(I),ERR,PERC
00970
            DF(I,3) = DEF(I)
00980 9
            CONTINUE
            IF (SUMP.GT.TOL) CONTIN = .FALSE.
00990
01000
            MRITE (6.840) SUM, SUMP, ASUM
01010
            IF (CONTIN) GOTO 89
01020
            COUNTR=3
            ITER=ITER+1
01030
01040
            DO 15 I = 1.NL
01050
            K = ILV(I)
            EL(1+3) = ALBG10(E(k))
01060
01070 15
            CONTINUE
01080
            WRITE(6.760) ITER
01090
            DO 60 JX=1.NL
            k = \{ L \ \forall \ (J \times)
01100
01110
            IF (ITER.E0.1) 60 TO 21
            IF(C(UX).EQ.CTEMP(UX))
01120
01130
           80TEMP(UX) = (ALDG10(EMAX(UX))+ALDG10(EMIN(UX))) > 2
01140
            EL (JX+1) = (3+0 (JX)+ETEMP(JX))/4
```

```
IF (AB (E)) (-EMAX (E)) (.LT.100.DR.AB) (E)) (-EMIN (E)) (.LT.100.60 TO 84
01150
91.1 \pm 0
             IF (0 (30).LT.0TEMP(30) (60 TO 23)
 01170
             IF (ACUM.LT.0) EL (JK.1) = (3+0 (JK) +ALDG10 (EMAX (JK))) ) (4)
             60 TO 24
01180
01190
         23 IF (ACUM.GT.0) EL (UX+1) = (3+6 (UX)+ALDG10+EMIN(UX))) > 4
 01200
         24 E () (=10++EL (3%+1)
01210
             60 TO 40
01220
         21 IF (ASUM.LT.0)60 TD 30
01230
             E (F) =EMIN(JX)
01240
             60 TO 40
01250
          30 E(K) =EMAX(JX)
01260
          40 EL (JX+2) = ALOG10 (E (K))
01270
             CALL CHEVRON
01280
             DO 50 KK =1.NP
01290
             DF(kk+2) = DEF(kk)
01300
         45 CONTINUE
              (KK+, JZ) = (DF (KK+2) - DF (KK+3)) / (EL (JX+2+-EL (JX+3) +
01310
01320
             A(KK+JX)=DF(KK+2)+EL(JX+2)+S(KK+JX)
01330
         50 CONTINUE
             ET3 = 10 + EL (JX + 3)
01340
01350
             WRITE(6,770) ILV(UX),ET3,E(ILV(UX)),AX1(1),DF(1,3),DEF(1,,PPD(1)
              IF (ND.EQ. 1) 60 TO 39
01360
01370
              DO 34 US =2.ND
              WRITE(6.780)AX1(US), DF(US, 3), DEF(US), PRD(US)
01380
01390 34
              CONTINUE
01400 39
              CONTINUE
01410
             WRITE (6,810)
01420
             E(K) = 10++EL(JX,3)
         60 CONTINUE
01430
01440
             DD 65 KK = 1 \cdot ND
01450
         65 CONTINUE
01460
             DD 69 KK = 1.ND
01470 69
             CONTINUE
01480
             IF (NL.NE.ND) GO TO 101
01490
             DO 120 I = 1.NL
             C(I) = RPD(I)-A(I+NL)-S(I+NL)+EL(NL+3)
01500
01510
            DD 110 J = 1.NL
01520
              C(I) = C(I) + S(I + J) + EL(J + 3)
             B(I * J) \approx S(I * J)
01530
01540
            BTEMP(I * J) = B(I * J)
01550 110
              CONTINUE
01560
              CTEMP(I) = C(I)
              CONTINUE
01570 120
01580
              60 TO 79
01590 101
              CONTINUE
01600
             DO 80 I = 1.NL
01610
            0 \in I + = 0.0
01620
            DD 70 J = 1.8D
01630
            C(1) := C(1) + 2(U \cdot 1) + (PPD \cdot 1) + A(U \cdot NL) + 2(U \cdot NL) + EL(NL \cdot 3) + eH(U \cdot 1)
            DO 67 US = 1.NL
01640
01650
            O(I)=O(I) +5(J+J3)+S(J+I)+EL(J5+3)+W(J+
01660 67
            CONTINUE
01670 70
            CONTINUE
            DO 68 JS = 1.NL

B(I.JS) = 0.
01680
01690
01700
            DO 71 J = 1.ND
01710
            B:1-J3) = B(1-J3: + 3:J-1:+8:J-J3:+₩:J:
01720 71
             CONTINUE
01730
01740 68
            BTEMP(I+US) = B(I+US)
            CONTINUE
```

```
01750
              LITEMP (1) = C (1)
01760 \\ 01770
          80 CONTINUE
          79 CONTINUE
 01780
              DO 78 HN=1+NL
01790
          78 CONTINUE
              CALL CIMED B.C.NL. KEP. 4.
01800
01810
              WRITE:6:301:
01820
         301 FORMATION :
              WRITE(6.301)
01830
01840
              MPITE (6.302)
01850
         302 FORMATION - PREDICTED E DISPEGARDING BOUNDARY CONDITIONS -
01860
               00 73 JU =1.ML
               ATEMP: J(0) = 1.0 + 40 + J(1)
01870
01880
          73 CONTINUE
             MPITE (6.251 ( ATEMP ( DO + DX=1+NL)
01890
              IF (FER.NE. 0) 60 TO 90
01900
01910
              PECALC≈.FALSE.
01920
             DD 84 I=1.NL
01936
              IF PECALC GO TO 84
              AMAX = ALDG10/EMAX(I)/
01940
01950
             AMIN = ALDGIO:EMIN:I
01960
              IF (C(I).GE.(AMIN~.0001).AND.C(I).LE.(AMAX+.0001)/68 TO 84
01970
             RECALC≈.TRUE.
             DO 82 N=1.NU
01986
             IF (K.EO.I) 60 TO 86
01990
90050
             CORDECTEMPORE
02016
         86 DO 81 L=1,NL
             B(L+K)=BTEMP(L+K)
02020
02030
         81 CONTINUE
         88 CONTINUE
02046
             IF (C \land I) .LT.AMIND C \land I) =AMIN
02050
02,060
             IF \cdot C \cdot (I) \cdot GT \cdot AMAX \cdot C \cdot (I) = AMAX
             CIEMP(I) =C(I)
02070
02080
             DO 83 K=1.NL
02090
             \mathbf{R} \cdot \mathbf{I} \cdot \mathbf{k} > = 0.0
             BTEMP (I+K) =B(I+K)
02100
02110
         83 CONTINUE
02120
             \mathbf{R}(\mathbf{I} \cdot \mathbf{I}) \approx \mathbf{1} \cdot \mathbf{0}
             BTEMP (I . I . = B . I . I )
0.24.30
         84 CONTINUE
02140
02150
             IF RECALC) GD TD 79
             DO 85 I=1.NL
02160
             J=ILV(I)
02170
02180
             TEMP=10++C(I)
             TEMP1 = 10++EL (1.3)
02190
00220
             ETOL (I) =ABS() (TEMP+TEMP1) /TEMP1) ◆100)
02210
             E : J:=TEMP
02220
             CTEMP(I) =EL(I+3)
         85 CONTINUE
02230
             CALL CHEVPON
02240
02250
             IUM = 0.
02260
             O,0
             A:UM = 0.0
07250
08380
             CONTIN=. TRUE.
08230
             MRITE (6:830)
02300
             DO 88 I = 1.ND
             EFF = FFD(I)-DEF(I)
02310
02320
             PEP(= : EPP : PPD : 1 : : +100
             JUM = JUM + ABI/ERR:
12330
             TUMP = TUMP + ABI (PERC)
92340
```

```
02350
            MPITE:6.820/1.DEF(I).PPD(I).EPP.PERC
 02360
            \mathbf{DF} : \mathbf{I} \bullet \mathbf{B} : = \mathbf{DEF} \cdot \mathbf{I}
             ACUM = ACUM + PERC
 02370
 02380 88
             CONTINUE
 02390
            IF (JUMP.GT.TOL) CONTINE.FALSE.
 02400
            PERBUM-BUMKND
 65416
            PERSUMP=SUMP/ND
 02420
            WRITE(6.840) SUM.SUMP.ASUM
            WPITE (6,715) PERSUM, PERSUMP
 02430
 0.2440
            PEITER = .TRUE.
            DO 87 I=1.NLAYS
02450
 02460
            IF (ETOL (I).GT.TOL) REITER=.FALSE.
02470
         87 CONTINUE
02480
            IF (CONTIN) 6010 89
02490
            IF (REITER) 60 TO 89
02500
            IF (ITER.LT.MAXIT) 60 TO 6
02510
            WRITE(6,9000)(E(I),I=1,NLAYS)
02520
            WRITE (6,310)
02530
            MPITE (6.303)
02540
       303 FORMAT(1H * TREACHED MAX NO OF ITERATIONS()
02550
            GOTO 10
02560
           WRITE(6,9000)(E(I),I=1,NLAYS)
02570
            IF (CONTIN) WRITE (6,304)
       304 FORMAT (1H +
02580
                            DEFLECTIONS ARE IN TOLERANCE!
02590
            IF (REITER) WRITE (6,305)
       305 FORMAT (1H )
02600
                             CHANGE IN MODULUS VALUES ARE IN TOLERANCE!
02610
         10 COUNTR=99
02620
            CALL CHEVRON
02630
            60 TO 9999
        90 WRITE(6+270)
02640
02650 9999 CONTINUE
02660
            WPITE(6.850)
02670
            GOT.
02680
       105 FORMAT (1H1 - 10X) (THE NUMBER OF PROBLEMS TO BE SOLVED IS ..
02690
                  2X•13•777
02700 820 FORMAT(5X, 15, 3F12.4, F10.1)
02710
       830 FORMAT(<//>
5%, 1POSITION1.8%. DEFLECTION1.3%, 1MEASURED1.3%.
02720
          % DIFFERENCE(+3X+/% DIFF.())
02730 9000 FORMAT(/.3x, THE FINAL MODULUS VALUES ARE1,//,
02740
          &4(F10.0,4X))
02750
       200 FORMAT (1H +A80)
02760
       210 FORMAT(V)
02770
       240 FORMAT(<//>
730, 110 THE A MATRIX(+//)T13, 114, T30, 124, T48, 131,
02780
          %T68+14(+2)
       251 FORMAT(2X,4(F10.0,3X))
02790
00850
       250 FORMAT (2X,4(E16.6,3X))
02810
       260 FORMAT 
02820
          & T68, (417)
       270 FORMAT
                            THIS MATRIX HAS NO SOLUTION!
02830
02840
       290 FORMAT (//: T30: 1N THE B MATRIX: -: T13: 11: T30: 12: T48: 13:
02850
          8168 · (4/ · /)
       300 FORMATY//*130**IN THE C MATRIX**/*T13**1**T30**2*,T48**3**,T68**4*
02860
02870
02880
       310 FORMATK725. THE MODULUS VALUES ARE NOT WITHIN TOLERANCE >>
02890 1000 FDPMAT(A80)
      -600 FORMATISX. NUMBER OF VARIABLE LAYERS AND TARGET DEFLECTIONS =
02900
02910
          $12.
02920 619 FORMAT(1X+2/+15X+*DEFLECTION PEADINGS IN MILS*+2+
02930
            - POSITION NO: (,6X,4(9X,11,2X))
02940 620 FORMAT (1DEFLECTIONS: 4.6X.4 (F12.3))
```

```
02950 621 FORMAT ( WEIGHTING FACTOR: ()4/F12.30)
02960
       650 FORMAT (20.5%) VARIABLE
                                        SYSTEM: 9X, (VALUE OF: 12%) VALUE OF:, /,
02970
           25%. LAYER NO1.3%, (LAYER NO1.5%, (MAXMUM MODULUS), 5%, (MINIMUM MODUL
02980
           8U51+4
02990
        660 FOPMAT(9X.12.9%,12.10%,F10.1.10%,F10.1)
03000
        710 FORMAT(5(x)+20X+(FOR EQUATION A + S
                                                       ◆ E = DEFLECTION(*///)
03010
        720 FORMAT(5//),23X, FOR THE EQUATION (B) ◆ (E) =
                                                                  [0](4/2)
        761 FORMAT(80/1H♦),/,5%,/DATA FOR DEVELOPING EQUATIONS FOR ITERATIONS/,
03020
03030
           % MO. (+2X+12)
03040
        760 FORMAT (1H1.5(2).5X. DATA FOR DEVELOPING EQUATIONS FOR ITERATIONS
03050
                 1.12.7775%, LAYER INITIAL CHANGED
                                                              OFFSET', 10X.
           & *DEFLECTIONS*, *5X, *NO. *, 5X, *MODULUS
03060
                                                     MODULUS/,5X,/ DISC.
                 CHANGED READINGS(1/72(1+1))
03070
        770 FORMAT (6X-12-4X)F8.0-3X-F8.0-4X-F6.2-3X-F6.3-6X-F6.3-3X-F6.3-
03080
03090
        780 FORMAT (136, F6.2, 3X, F6.3, 6X, F6.3, 3X, F6.3)
03100
        790 FORMAT(2/2)
       810 FORMAT (72(1+1))
03110
       715 FORMAT (28X+"AVERAGE: "+2F10.4)
03120
03130
        840 FORMAT(23X+"ABSOLUTE SUM:",2F10.4,/,22X+
          &"ARITHMETIC SUM:",10%,F10.4>
02140
03150
       850 FORMAT(1H > 26H+++++ END OF PROGRAM +++++)
03160 1212
             FORMAT (1H1,///, "PROBLEM NUMBER ", 14,////)
03170
            END
03180
            SUBPOUTINE CHEVPON
03190CR040
               65P040 N-LAYER ELASTIC SYSTEMS PROGRAM
032000
            CALCULATING STRESSES, STRAINS, AND DEFLECTIONS
              ***** MAIN ROUTINE - N-LAYER ELASTIC SYSTEM *****
03210C191MN
032200
            COMMON
                     ZRMCDYZRR (10),
                                        22(10),
                                                             V (5) •
03230
                                                   E (5) •
                                                                        HH (4) .
                                                  A(396,5), B(396,5),
03240
          2.
                             H(4).
                                        AZ (396),
                                                                        0(396,5),
03250
                             D(396,5), AJ(396),
                                                  RJ1(396), RJ0(396).
                                                                        TITLE (20) ,
                             TEST (11) , BZ (100) ,
                                                  X(5,4,4),
                                                              SC (4) +
03260
          2
                                                                         FM(2:2):
                             PM(4,4,4),R,
                                                             AR.
03270
          8
                                                   z,
                                                                        NS,
03280
                             N,
                                                   ITN.
                                                             RSZ,
                                                                        PSR,
                             ROM.
                                        RMU,
03290
                                                   SF,
                                                             CSZ,
                                                                        CST.
          8,
03300
                                        CTR.
                             CSR,
                                                   COM.
                                                             CMU.
          8
                                                                        PSI.
                                        HOUTP,
03310
                             NLINE.
                                                  NTEST.
                                                             ı.
                                                                        ITN4.
03320
                                       LC,
                                                   JT,
                                                             TZZ,
                                                                        PR,
          8
                             K٠
                             PA.
                                                  EP.
03330
          2
                                       р,
                                                             TIP.
                                                                        TIM.
03340
                             T1.
                                        12,
                                                   тз,
                                                             T4,
          8.
                                                                        T5,
03350
                                        TZP,
                                                  T2M,
                                                             WA.
          8.
                             T6.
                                                                        B.11 .
                             BJ0,
                                        7F •
03360
                                                  SZ1•
                                                             SZ2,
                                                                        361,
03370
                             SG2,
                                       PH,
                                                  PH2+
                                                             VK2,
                                                                        VKP2.
03380
                             VK4.
                                        VKP4,
                                                             RDT.
                                                   VKK8,
                                                                        RDS.
            COMMON/OPT/COUNTR, DEF (4), NLAYS
03390
03400
            INTEGER COUNTR
03410
                  ASTER, PERD/4H++++, 4H.../
03420
           IF (COUNTR.EQ.99) 60 TO 7
03430
           IF (COUNTR.GE.2) GO TO 26
03440
           CALL FLGEOF (41,NFILE)
034500
034600
                ◆◆ COMPUTE ZEROS OF J1(X) AND J0(X). SET UP GAUSS CONSTANTS ◆◆
           k = ITN+1
03470
03480
           DO 2 I=7,K,2
03490
                  T = I/2
03500
                  TD = 4.0 + T - 1.0
                  RZ(I) = 3.1415927 + (T - 0.25 + 0.050661/TD)
03510
03520
                       -0.053041/TD++3 + 0.262051/TD++5)
03530
           5.441.8=1 E Od
03540
                  T = (1-2)/2
```

```
03550
                   TD = 4.0 + 1.0
 03560
                  BZ(T) = 3.1415927 \bullet (T + 0.25 - 0.151982 \times TD)
 03570
                        + 0.015399 TD++3 - 0.245270/TD++5)
 035800
 03590
         10 PEAD(5: 398) TITLE
 0.0600
        398 FORMAT (20A4)
 03610
            IF ·NFILE.E0.1> 60 TO 9999
        310 FORMAT (2084)
PEAD:5, 399; LINENU, WGT, PSI, NOUTP, NPUN
 0.86.20
 03630
 03640
        311 FORMAT (2F12.0: 112: 11)
 03650
            PEAD(5.399) LINENU, NS. (E(I),V(I),I=1,NS)
            MUMYS = NO
03660
03670
        301 FORMAT: 13.F9.0.9F6.0:
03680
        399 FORMATIVE
03690
         1 FORMAT(6%,10F6.0)
03700 1001 CONTINUE
03710
            N \approx NI - 1
PEAD(5, 399) LINENU, (HH(I),I=1,N)
03720
03730
        313 FORMAT (10F6.0)
03740
          7 PEAD(5: 399) LINENU: IR: (PR(I): I=1:IR)
03750
            IF IP.E0.00 RETURN
03760 2001 CONTINUE
03770
            PEAD(5: 399) LINENU: IZ: (ZZ(I):I=1:IZ)
            IF (COUNTR. E0.99) GD TO 26
03780
03790 3001 CONTINUE
03800
            AP = 30PT (W6T/(3.14159*PSI))
03810
            MLINE = 17+NS
03820
            NPAGE = 1
03830
            WRITE(6:350) (TITLE (I): I=1:20)
       350 FORMAT (1H1//1H0.5H++++,20A4)
03840
03850
           WRITE(6:351)
03860
       351 FORMAT (1H0.23X.26HTHE PROBLEMPARAMETERS ARE//)
03970
           MPITE(6,352) WGT.PSI.AP
03980
       352 FORMAT (1H0: 5%; 12HTOTAL LOAD..., 8%; F10.2; 5H LBS;/
                    1HO. 5%, 15HTIRE PRESSURE.., 5%, F10.2, 5H PSI./
03890
                    1H0,5%,13HLDAD RADIUS..,7%,F10.2,5H IN.//)
03900
03910
           MPITE:6:353)
03920
       353 FORMAT-140,5%,9HLAYER NO.,8X,7HMODULUS,8X,14HPOISSONS PATIO,
03930
                  8X+9HTHICKNESS/)
           WPITE(6:354) (I;E(I); V(I); HH(I); I=1;N)
03940
03950
       354 FORMAT (1H0,8X,13,9X,F10.0,11X,F5.3,14X,F6.2)
03960
           MPITE (6.349) NS. E(NS). V(HS)
       349 FOPMAT (1H0.8X.13.9X.F10.0.11X.F5.3.11X.14HSEMI-INFINITE ///)
03970
03980
           IF (COUNTP.NE.99) 60 TO 27
03990
           MRITE (6.348)
       348 FORMAT +1H +1X+1HR+3X+1HZ+11X+8HVERTICAL+2X+10HTANGENTIAL+
04000
                      3K.6HRADIAL,6X.5HSHEAR.6X.4HBULK)
04010
04020
        27 CONTINUE
        ** ADJUST LAYER DEPTHS **
040300
04040
           H (1 (#HH (1)
04050
           DO 25 I=2,N
04.06.0
        25 H(I)=H(I-1)+HH(I)
04070
           CALL CHECK (1)
04080
        26 CONTINUE
04090
           IF (COUNTP.E0.99) WPITE (6.348)
           IPT=0
04100
041100
        ◆◆ ITAPT ON A NEW P ◆◆
04120
      100 IPT=IPT+1
           IF (IPT IP) PETUPN
04130
04146
      105 PEPP (IPT)
```

```
04150
             DO 31 I =1.12
 04160
             DO 31 J≈1•N
 04170
                 = ABS (H(J) - 22(I))
             ΤZ
         IF(TZ - .0001) 32,32,31
32 ZZ(I) = -H(J)
 04180
 04190
 04200
         31 CONTINUE
 04210
             IF (COUNTR.NE.99) 60 TO 39
             WRITE(6: 355)
 04220
 04230
             MLINE = MLINE+1
 04240
        355 FORMAT (1H )
 04250
         39 CONTINUE
 042600
         ◆◆ CALCULATE THE PARTITION ◆◆
 04270
             CALL PART
 04280C
         ◆◆ CALCULATE THE COEFFICIENTS ◆◆
 04290
             DO 125 I=1, ITN4
 04300
             P=AZ(I)
 04310
        107 CONTINUE
             IF (NS.67.5) 60TO 108
04320
04330
            CALL (0085(1))
04340
            60 TO 109
        108 CONTINUE
04350
            CALL (015(I)
IF (R) 115,115,110
04360
04370
        109
             PP = P+R
04380
        110
            CALL BESSEL (0.PR.Y)
04390
04400
                PJO(D) = Y
04410
            CALL BESSEL (1.PR.Y)
04420
                RJ1(I) = Y
04430
        115 PA=P+AR
04440
            CALL BESSEL (1,PA,Y)
04450
            A \cup (I) = Y
04460
            CALL CHECK (2)
04470
        125 CONTINUE
04480
       195 IZT=0
044900
        ** STAPT ON A NEW Z **
04500
       200 IZT=IZT+1
            IF (12T-12) 205,205,100
04510
04520
        205 Z=ABS (ZZ(IZT))
04530
            IF / NLINE - 54 > 207,206,206
04540
       206 NPAGE = NPAGE + 1
04550
            NLINE = 8
04560
       207 CONTINUE
045700
         ** FIND THE LAYER CONTAINING Z **
04580
            TZZ = 0.0
04590
            DD 210 J1=1.N
04600
            J=NS-31
04610
            IF (Z-H(J)) 210,215,215
       210 CONTINUE
04620
04638
04640
            60 TO 34
04650
       215 L=J+1
            IF (ZZ(IZT)) 33,34,34
04660
04670
         33 L ≈ J
04680
            722 = 1.0
04690
         34 CONTINUE
04700
           CALL CALCIN(IRT)
        IF (TZZ) 36.36.35
35 ZZ(IZT) = -ZZ(IZT)
04710
04720
04730
            IZT = IZT-1
04740
         36 CONTINUE
```

```
04750
             60 10 200
 N4760 9999 CALL EXIT
04770
             TOTE:
 04780
             END
 04,790
             BLDCK DATA
 048000
 04810
             COMMON
                       PMCDYPRR(10).
                                          22 (10) v
                                                     E (5 · •
                                                                V:5:,
                                                                            HH (4) +
                                                     A(396,5), B(396,5), ((396,5),
                                          AZ (396) •
 04820
                               H(4++
                               D(396,5) • AJ(396) •
 04830
            2
                                                     RU1(396), RU0(396), TITLE(20),
04840
            ĕ.
                               TEST (11) . BZ (100) .
                                                     X(5,4,4), SC(4),
                                                                            FM(2,2),
 04850
                               PM(4,4,4),P.
                                                                AR,
            Ş.
                                                                            NS.
04860
            2
                               м.
                                          L,
                                                     ITN.
                                                                RSZ,
                                                                            RSR,
04870
            Ş,
                               POM.
                                          PMU,
                                                     SF,
                                                                CSZ,
                                                                            CST.
04880
                               CSR,
                                                     COM.
                                          CTR,
                                                                CMU.
                                                                            PSI,
            ĸ,
04890
                                          NOUTP,
                               NLINE,
                                                     NTEST:
            Z,
                                                                I,
                                                                            ITN4,
04900
                               K٠
                                          LC,
                                                     JT,
                                                                TZZ,
                                                                            PR.
04910
                               PA,
                                          ρ,
                                                     EP,
                                                                TIF,
                                                                            TIM.
04920
                               т1,
                                          12,
                                                     T3,
                                                                T4.
           2,
                                                                            T5,
04930
           8
                               T6,
                                          T2P,
                                                     T2M,
                                                                ЫĤ÷
                                                                            BJ1,
04940
                               BJ0,
                                          ZF,
                                                     SZ1,
                                                                SZ2,
                                                                            961,
           ×
04950
                               962.
                                          PH.
                                                     PH2,
                                                                VK2,
                                                                           VKP2,
04960
           2
                               VK4,
                                          VKP4,
                                                     VKK8,
                                                                RDT,
                                                                            RDS
04970
            DIMENSION ZB(6)
04980
            EQUIVALENCE (BZ+ZB )
            DATA ZB/0.0+1.0+2.4048+3.8317+5.5201+7.0156/
04998
05000
            DATA ITN/46/- ITN4/184/
            END
05010
05020
             SUBPOUTINE BESSEL (NI, XI, Y)
               *****SUBROUTINE BESSEL - N-LAYER ELASTIC SYSTEM *****
050300
050400
05050
            DIMENSION PZ(6)+QZ(6)+P1(6)+Q1(6)+D(20)
            DATA PZ/1.0E0,-1.125E-4,2.8710938E-7,-2.3449658E-9,
05060
           &3.9806841E-11,-1.1536133E-12/, QZ/-5.0E-3,4.6875E-6,
&-2.3255859E-8, 2.8307087E-10, -6.3912096E-12, 2.3124704E-12/,
05070
05080
           05090
05100
05110
05120
           & PI/3.1415927/
051300
051400
05150
          9 N = NI
05160
            \times = \times I
05170
            IF (X-7.0) 10,10,160
051800
05190
         10 X2=X/2.0
05200
            FAC=-X2+X2
            IF (N) 11+11+14
05210
05220
         11 (=1.0
05230
            Y≖€
            DO 13 I=1.34
05240
05250
            T=I
05260
            C=FAC+C> (T+T)
            TEST=ABS (C) - 10.0\bullet \bullet (-8)
05270
            IF (TEST) 17:17:12
05280
05290
        12 Y=Y+0
05300
        13 CONTINUE
05310
        14 €=>2
05320
            \gamma = 0
05330
            DO 16 I=1-34
05340
            T = [
```

```
05350
             \texttt{C=FAC} \bullet \texttt{C} \wedge (\texttt{T} \bullet (\texttt{T} + \texttt{1} \bullet \texttt{0})))
05360
             TEST=ARS (0) - 10.0++-8)
              IF (TEIT) 17:17:15
05370
05380
          15 Y=Y+0
          16 CONTINUE
05390
          17 PETUPN
05400
05410
        160 IF (N: 161,161,164
054200
054300
05440
        161 DO 162 I=1,6
05450
             \mathbf{D}(\mathbf{D}) = \mathbf{PZ}(\mathbf{D})
             D(I+10) = QZ(I)
05460
05470
        162 CONTINUE
05480
             60 TO 163
054900
05500
        164 DO 165 I=1.6
05510
             D(I) = PI(I)
             D(I+10) = 01(I)
05520
05530
        165 CONTINUE
05540
        163 CONTINUE
05550
             T1 = 25.07X
05560
             T2=T1+T1
05570
             P = D(6) + T2 + D(5)
05580
             DO 170 I=1.4
05590
             J = 5-I
             P = P + T2 + D(J)
05600
05610
        170 CONTINUE
             0 = D(16) + T2 + D(15)
05620
             DO 171 I=1.4
05630
05640
             J = 5-1
             0 = 0 + 72 + D (J + 10)
05650
        171 CONTINUE
05660
05670
             0 = 0 \bullet T1
056800
             T4 =DSQRT (X+PI)
05690
05700
             T6 = SIN(X)
05710
             17 = 003 (2)
057200
05730
             IF (N) 180,180,185
057400
05750
        180 T5 = ((P-0)) + T6 + (P+0) + T7) \times T4
05760
             60 TO 99
        185 T5 = ((P+0) \bullet T6 - (P-0) \bullet T7) / T4
05770
         99 Y = 15
05780
05790
             PETURN
05800
             END
05310
             SUBPOUTINE PART
058200
                ◆◆◆◆◆◆SUBROUTINE PART - N-LAYER ELASTIC SYSTEM ◆◆◆◆◆◆
058300
05840
             COMMON
                        PRMCDY/RR(10);
                                             ZZ (10),
                                                         F(5) •
                                                                     V (5) y
                                                                                 HH (4) .
                                                         A(396,5), B(396,5), C(396,5).
05850
                                H(4):
                                             AZ (396) y
                                 D(396.5) • AJ(396) •
                                                         RU1(396), RU0(396),
                                                                                 TITLE (20)
05860
            8
                                                         X(5,4,4), SC(4),
                                                                                 FM(2+2)+
05870
            2
                                 TEST(11), BZ(100),
                                                        z,
05880
                                 PM(4,4,4) . R,
                                                                    AR,
                                                                                NS,
05390
                                N.
                                             L,
                                                         ITH.
                                                                     RSZ,
                                                                                 RSR,
            Ż
                                                                                 CST.
05900
                                FOM.
                                             RMU.
                                                                     CSZ,
                                                         SF.
            8
                                             CTR:
                                                                                 PSI.
05910
                                CSR,
                                                         COM.
                                                                     CMU,
05920
                                            NOUTP
                                                         NTEST.
                                                                                 ITH4
           8
                                HLINE,
                                                                     Į,
                                            LC.
                                                         JT.
                                                                     TZZ,
                                                                                 PR.
05930
           Z
                                                         EP.
05940
                                PA.
                                            Р.
                                                                     TIP.
                                                                                 TIM.
```

```
05950
                                Т1,
                                           T2.
                                                       T3.
                                                                              T5.
                                                                  T4.
05960
            :*
                                T6.
                                           T2P+
                                                       TaM.
                                                                  MH.
                                                                              R.11 .
 05970
                                BJ0.
                                           CF.
                                                       ....
                                                                   : 32.
                                                                              61.
05920
                                           FH.
                                ~ G&•
                                                                  VI 2+
                                                       FHE .
                                                                              VAPe.
nessean.
                                VF 4.
                                           VEP4.
                                                       VFF8.
                                                                  PET.
                                                                              RIC
 0 \in 0.00
             DATH 61 0.86113631 .. 62:0.33998104
           4 ZF = AP
06.01.0
06.020
             MTEST = 2
             IF (P) 8,8,9
06030
           9 CONTINUE
06040
             NTEST = AR/R + .0001
06050
             IF - NTEST) 6,6,5
06060
           6 CONTINUE
06.070
06030
             NTEST = P/AR + .0001
             ZF = R
06090
06400
           5 CONTINUE
             HTEST = HTEST + 1
0 \pm 110
             IF (NTEST-10) 8,8,7
06120
           7 CONTINUE
06130
06140
             MTEST = 10
06150
           8 CONTINUE
061600
                 ** COMPUTE POINTS FOR LEGENDRE-GAUSS INTEGRATION **
         15 k = 1
06170
06180
             CALL CHECK (9)
06190
              ZF = 2.0 \bullet ZF
              SZ2 = 0.0
06200
06210
             DO 28 I=1, ITN
06220
               SZ1 = SZ2
               SZ2 = BZ(I+1)/ZF
06230
06240
                  SF = SZ2 - SZ1
06250
                  PP = $Z2 + $Z1
             $61=$F+61
06260
06270
             062=8F+62
06280
            AZ (K) =PP-561
            AZ (K+1) =PP-362
06230
06300
            AZ (K+2) =PP+862
06310
            AZ (K+3) ≈PP+SG1
               k = k + 4
06320
06330
            CALL CHECK (10)
06340
         28 CONTINUE
06350
         40 PETURN
06360
            END
            SUBPOUTINE CALCIN (IRT)
06.370
            *****SUBROUTINE CALCIN - N-LAYER ELASTIC SYSTEM *****
063800
063900
06400
                       /RMCDY/RR (10);
            COMMON
                                          ZZ(10),
                                                      E(5),
                                                                 V (5) y
                                                                             HH (4) .
06410
                                          AZ (396),
                               H(4) .
                                                      A(396,5), B(396,5),
                                                                             0(396,5),
06420
                               D(396.5), AJ(396),
                                                      RJ1(396), RJ0(396),
                                                                            TITLE (20) .
06430
                               TEST (11) , BZ (100) ,
           8.
                                                     X(5,4,4), SC(4),
                                                                             FM(2,2),
06440
                               PM(4,4,4),R,
           8
                                                     z,
                                                                AP.
                                                                            NS.
                                                      ITH,
06450
           8
                               N.
                                                                 RSZ,
                                                                             RSR:
06460
           8
                               POM,
                                          RMU,
                                                      SF,
                                                                 csz,
                                                                             CST.
06479
                               CSR,
                                                                 CMU,
                                          CTR.
                                                      COMA
           Ŷ,
                                                                             PSI.
                                          NOUTP,
06480
                              NLINE,
                                                      NTEST.
                                                                             ITN4.
                                                                 I,
06490
           3
                                          LC,
                                                      JT.
                                                                 TZZ,
                                                                             PR.
06500
                              PA.
                                                     EP.
                                          P.
                                                                 TIP,
                                                                             TIM,
           ٧,
06510
           ŝ.
                               T1,
                                          T2,
                                                      тз,
                                                                 T4.
                                                                             T5.
06520
                                          TZP.
                                                      T2M.
                                                                 WA,
           8
                               T6 •
                                                                             BJ1.
06530
                              BJ0.
                                          JF.
                                                      221,
           8.
                                                                 322,
                                                                             361 ⋅
06540
                                          PH.
                                                     PH2,
                               162,
                                                                 VK2+
                                                                             VKP2,
```

The state of the s

```
06550
                              VK4,
                                        VKP4.
                                                   Vkk8.
                                                             PDT.
                                                                        PD:
 06560
            COMMON OPT COUNTR, DEF (4), HLAYS
 06570
            INTEGER COUNTR
 06580
            DIMENTION W(4)
 06590
            DATA M/0.34785485.2.0.65214515.0.34785485
 0 = 0.000
 06610
          2 VL≈2.0•V(L)
 06620
            EL=(1.0+V/L))/E(L)
 06630
            VL1=1.0-VL
 06640
            002=0.0
 06650
            057=0.0
 06660
            CSP=0.0
 06670
            CTP=0.0
 06680
            COM=0.0
06690
            CMU=0.0
06700
            NTC1 = NTEST + 1
06710
            ITC ≈ 1
06720
            JT = 0
06730
            ARP = AR
06740
06750
            IF (NOUTP) 4,4,5
          4 ARP = ARP+PSI
06760
          5 CONTINUE
06770
         10 DO 40 I=1.ITN
            INITIALIZE THE SUB-INTEGRALS
067800
            RSZ=0.0
06790
06800
            RST=0.0
06810
            RSR=0.0
06820
            PTR=0.0
06830
            POM=0.0
06840
            PMU=0.0
068500
            COMPUTE THE SUB-INTEGRALS
                 k = 4 + (1-1)
06860
0.7850
            DO 30 J=1.4
06880
                J1 = F + J
            P=AZ(J1)
06890
06900
            EP#EXP (P+Z)
06910
            T1=B(J1+L++EP
06920
            TE=D/JI+L//EP
06930
            T1P=T1+T2
06940
            T1M=T1-T2
06950
            T1=(A(J1,L)+B(J1,L)+Z)+EP
            T2=(C(U1+L)+D(U1+L)+2)/EP
06960
06970
            T2P=P+(T1+T2)
06980
            T2M=P+(T1-T2)
06990
            WA=AJ(J1) ◆W(J)
            CALL CHECK (3)
07000
07010
            IF (R) 20,20,15
07020
        15 BJ1=RJ1 (J1) ◆P
07030
            BJ0≃RJ0(J1) ◆P
07040
           RSZ=RSZ+WA+P+BJ0+(VL1+T1P-T2M)
07050
           ROM=ROM+WAGEL+BJ0+(2.0+VL1+T1M-T2P)
07060
           RTR=RTR+WA+P+BJ1+(VL+T1M+T2P)
07070
           PMU=PMU+WA+EL+BJ1+(T1P+T2M)
07080
           RSR=FSR+WA+(P+BJ0+((1.0+VL)+T1P+T2M)-BJ1+(T1P+T2M)/R)
07090
           RST=RST+MA+(VL+P+BJ0+T1P+BJ1+(T1P+T2M)/R)
07100
           CALL CHECK (4)
07110
           GO TO 30
071200
            SPECIAL POUTINE FOR R = ZERO
        20 PP=POP
07130
           RSZ=RSZ+WA+PP+(VL1+T1P-T2M)
07140
```

```
07150
             POM=POM+WA+EL+P++2.0+VL1+T1M-T2P+
 07160
             PITHPITHMAMPPMACALLAN, 5:411P40.54T2MV
 07170
             PIPHPIT
 07180
             CALL CHECK (5)
 07190
          30 CONTINUE
 072000
 07210
              SF = (A2(K+4) - AZ(K+1)) \times 1.7222726
 07220
             CSZ=CSZ+RSZ+SF
             CST=CST+PST+SF
 07230
 07240
             CSR=CSR+RSR+SF
 07250
             CTR=CTR+RTR+SF
 07260
             CDM=CDM+RDM+SE
 07270
             CMU=CMU+RMU+SF
 07280
                 RSZ = 2.0+RSZ+AR+SF
             CALL CHECK (6)
TESTH = ABS (RSZ)+10.0++(-4)
 07290
 07300
 07310
             IF (ITS-NTS1 ) 31,32,32
 07320
         31 CONTINUE
 07330
             TEST (ITS) = TESTH
 07340
             ITS = ITS+1
 07350
            GO TO 40
         32 CONTINUE
 07360
 07270
             TEST (NTS1) = TESTH
 07380
            DO 33 J = 1.MTEST
            IF (TESTH-TEST (J)) 35+36+36
 07390
07400
         35 CONTINUE
 07410
            TESTH = TEST(J)
         36 CONTINUE
 07420
07430
            TEST(J) = TEST(J+1)
 07440
         33 CONTINUE
 07450
            IF (TESTH) 50,50,40
07460
         40 CONTINUE
            JT = 1
07470
07480
            CALL HIGHM
07490
         50 CSZ=CSZ+APP
07500
            CALL CHECK (7)
07510
            CST=CST+APP
07520
            CIR=CIR+APP
07530
            COR=COR+APP
07540
            COM=COM+ARP
07550
            IF (COUNTR.NE.99) DEF (IRT) =COM+1000.
07560
            CMU=CMU+APP
            BSTS = CCZ+CST+CSR
VCTP = (CSZ-V(L)+(CST+CSR))/E(L)
07570
07580
            BST = BSTS + (1.0-2.0+V(L))/E(L)
07590
07600
            IF (TZZ) 72.72.71
07610
07620
        72 CONTINUE
07630
            PDS=+CSP-V(L) + (CSZ+CST)) /E(L)
07640
            35T=2.0+(1.0+V(L))+CTR/E(L)
07650
            PDT = (CST - V(L) + (CSZ + CSP))/E(L)
07660
            IF (COUNTR.NE.99) 60 TO 99
           MPITE (6,315) P.Z.CSZ.CST.CSR.CTP.BSTS
07670
07680
           WRITE (6.318) VSTR.RDT.RDS.SST.BST
           MRITE (6:317) COM
07690
       315 FORMAT (1H0,F4.1,F6.1,1X,5HSTRE -1P5E11.3)
07700
07710
       318 FORMAT (1H +11X+5HSTRA +1P5E11.3)
07720
       317 FORMAT (1H +11X+5HDSPL +1PE11.3)
07730
           MLINE = MLINE + 3
07740
           IF (JT) 99,99,60
```

```
07750
         60 WRITE (6.316)
07760
07770
        316 FORMAT +1H++127K+4H5LOW/
         99 PETURN
07780
             EHD
07790
             MHBIH BHITUDGGU:
078000+ +
                  ******SUBPOUTINE HIGHM - N-LAYER ELASTIC SYSTEM *****
078100
             DOTAL LIST
             LABEL
078200
078300HIGHM
              ••••••SUBPOUTINE HIGHM - N-LAYER ELAITIC SYSTEM ••••••
078400
07850
             PETURN
07860
             END
07870
             SURPOUTINE CHECK (KIN)
                    ******SUBPOUTINE CHECK - N-LAYER ELASTIC SYSTEM *****
078800
078900
07900
                       ZPMCBYZRR (10);
                                          ZZ (10) •
                                                     E (5) ,
                                                                V (5) .
                                                                            HH (41.
            COMMON
                                                     A(396,5), B(396,5), C(396,5),
                                          AZ (396),
07910
                              H(4) .
07920
                              D(396,5), AJ(396),
                                                     PU1(396), RU0(396), TITLE(20),
                                                                            FM(2,2),
02930
                               TEST (11) , BZ (100) ,
                                                     X(5,4,4), SC(4),
           8
                                                               AR.
07940
                              PM(4,4,4),R,
                                                    z,
                                                                          NS.
07950
                              N.
                                                     ITN,
                                                                RSZ,
                                                                            RSR,
           8
07960
                              POM,
                                          RMUs
                                                     SF,
                                                                            CST:
                                                                CSZ,
07970
                              CSR:
                                          CTP.
                                                     COM,
                                                                CMU,
                                                                            PSI,
07980
                              NLINE,
                                          NOUTP,
                                                     NTEST,
                                                                 ı,
                                                                            ITN4.
                                                                 TZZ,
                                                                            PP.
07990
                                          LO
                                                     JT.
08000
                              PA.
                                          Р,
                                                     EP:
                                                                TIP,
                                                                            TIM.
                              T1.
                                          12,
                                                     тз,
                                                                 T4,
                                                                            T5.
08010
                                          Tap,
                                                     T2M.
                                                                MA.
                                                                            BJ1 .
08020
                              The
08030
                              BJ0,
                                          ZF,
                                                     SZ1,
                                                                szz,
                                                                            961,
                                          РН,
                                                     PH2,
                                                                            VKP2,
0 \pm 0 4.0
                              362,
                                                                VK2,
           8,
                                          VKP4
                                                     VKK8,
                                                                            RDS
02050
                              VK4.
                                                                RDT.
08060
            RETURN
03070
            END
             CUBROUTINE COFE(KIN)
02080
                DIE FOR ALL PROBLEMS, UP TO MAX DIMENSION OF 15 LAYERS
080900
            PEPPOGRAMMED I MAY 1980 BY L J PAINTER - EXCELLENT ACCURACY
981000
              NOTE DOUBLE ENTRIES FOR COES & COIS PREVIOUSLY USED
081100
081200
               ******SUBPOUTINE COEE ~ N-LAYER ELASTIC SYSTEM *****
081300
                       PMCDY/PR(10),
                                                                V (5) •
                                          ZZ (10) •
                                                     E(5),
                                                                            HH : 42 •
08140
            COMMON
                                                     A(396,5), B(396,5), C(396,5),
08150
                              H (4 + )
                                         AZ (396),
                              D(396,5), AJ(396),
                                                     RU1(396), RU0(396), TITLE(20),
08160
                              TEST(11) . B2(100) .
08170
                                                    X(5,4,4), SC(4),
                                                                            FM+4),
                              PM(4:4:4) . P.
                                                               AP,
08180
                                                     ITM:
                                                                RSZ.
                                                                           POP.
08190
                              14.
                                         L
                                                                            CÉT.
                              ROM,
                                          RMII.
                                                     SF.
                                                                C3Z*
08200
                                                                            PEI+
                              COPY
                                          CTR:
                                                     COM,
                                                                CMU.
08210
                                         NOUTP.
                                                     NTEST.
                              MLINE.
                                                                            ITH4.
08220
                                                                1,
                                         LC,
                                                                177.
                                                                           PP.
08230
                              k e
                                                     JT.
08240
                              PA.
                                         Р,
                                                    EP.
                                                                TIP.
                                                                            TIM.
                                          T2,
                                                     T3•
                              T1 -
                                                                T4.
                                                                            T5.
08250
                                          T2P,
                                                     T2M.
08260
           9
                              T6 •
                                                                WA.
                                                                           BJ1 •
                              BJ0 \bullet
                                          ZF•
                                                     SZ1,
                                                                222,
                                                                            961,
08270
                              162.
                                         PH:
                                                    PH2,
                                                                V#2,
                                                                            VKP2,
08280
                                          VKP4.
08290
                              V+ 4.
                                                     AKKS.
                                                                RDT.
                                                                           RDS
08300
            PEAL+4 0:2:2:
            ENTRY COESCHING
08310
            ENTRY COISONING
08326
                LC = FIN
08330
                     TET UP MATRIX X ≈DI+MI+KI+K+M+D
0834001-MX
```

```
083500
               COMPUTE THE MATRICES SORT
08360
             1 DO 10 k=1.84
               \mathsf{T} \mathbf{1} = \mathsf{E} \left( \mathsf{k} \left( \mathsf{k} + \mathsf{f} \right), 0 + \mathsf{V} \left( \mathsf{k} + \mathsf{f} \right) \right) + \left( \mathsf{E} \left( \mathsf{k} + \mathsf{f} \right) + \mathsf{f} \left( \mathsf{h} + \mathsf{f} \right) \right) \right)
08370
08380
               T1M=T1-1.0
08390
               PH=P+H+k+
               PH2≈PH+2.0
08400
08410
               VK2≈2.0•V(k)
               VKP2=2.0+V(k+1)
08420
084300
08440
               Vkk8=8.0•V(k)•V(k+1)
08450
               VKP4=2.0◆VKP2
               Vk4=2.0+Vk2
08460
08470
               \times (K, 1, 1) = VK4 - 3.0 - T1
08480
               \times (K, 2, 1) = 0.0
               X(K) 3:1) = 71M+ (PH2-VK4+1.0)
08490
               %(k,4,1)=-2.0+T1M+P
08500
085100
08520
               T3=PH2+:VK2-1.0:
08530
                74=VkK8+1.0~3.0+VkP2
08540
               T5=PH2 + (VkP2-1.0)
08550
               T6=Vkk8+1.0-3.0◆Vk2
085600
08570
               \%(k+1+2) = (T3+T4-T1+(T5+T6)) \times P
               X(K,2,2) = T1 + (VkP4-3.0) - 1.0
08580
08590
               %(k,4,2)=T1M+(1.0~PH2-VkP4)
086000
               M(K \cdot 3 \cdot 4) = (T3 - T4 - T1 + (T5 - T6))/P
08610
086200
               T3=PH2◆PH-VKK8+1.0
08630
               T4=PH2+(VK2-VKP2)
08640
086500
               X(K,1,4) = (T3+T4+VKP2-T1+(T3+T4+VK2)) \times P
08660
                               -(-T3+T4-VkP2+T1+(T3-T4+Vk2))/P
               X(K \cdot 3 \cdot 2) =
08670
086800
               \times (k,1,3) = T1M + (1.0-PH2-VK4)
08690
               X(K,2,3)=2.0+T1M+P
08700
08710
               \times (K,3,3) = Vk4-3.0-T1
               X(K, 4, 3) = 0.0
08720
087300
08740
               X(K,2,4) = T1M + (PH2 + VKP4 + 1.0)
               \times (K, 4.4) = T1 + (VKP4 - 3.0) - 1.0
08750
087600
               \mathbf{k}' = \mathbf{k}'
08770
           10 CONTINUE
               COMPUTE THE PRODUCT MATRICES PM
087800
               30 \text{ (N)} = 4.0 + (\text{V/N}) - 1.0
08790
08800
               IF (N-2) 13,11,11
           11 DO 12 K1=2,N
08810
              M=NS-K1
03820
08830
               SC(M)=SC(M+1)+4.+(V(M)-1.*
           12 CONTINUE
08840
           13 CONTINUE
08850
088600
08870
              0 < 1 \cdot 1 > = 1.
              Q(2\cdot 2) = 1.
08880
08890
               Q(1,2)=0.
00980
              QQ
                      =P+2.+H(N)
08910
               IF(00.L1.-88.) 00≈-88.
               IF (00-88. ) 15:15:16
08920
          15 CONTINUE
08930
              0(1.2)=EXP(-00)
08940
```


2 OF 2 4D A 099593

MICROCOPY RESOLUTION TEST CHART

```
0.2.1) IT NOT NEEDED FOR INITIALIZING THE PM MATRIX
089500
08960
          16 CONTINUE
             CO LOOP INITIALIZES PM:N...
089700
08980
             DO 20 M=1.4
08990
             LL= (M+1)/2
09000
             IID 20 J=3,4
             PM:N:M:J:= X:N:M:J: •
                                          0.41.5
09010
         20 CONTINUE
09020
09030
             DD 36 K1=3+N
             k =M ] ++ 1
09040
09050
             * K = K + 1
09060
             OO
                    =P+2.+H(K)
             IF (00.LT.-88.) 00=-88.
09070
             IF (00-88. ) 22,22,23
09080
         22 CONTINUE
09090
09100
             0.(2,1) = EXP(00)
09110
             9(1 \cdot 2) = 1.79(2 \cdot 1)
09120
             60 TO 24
         23 CONTINUE
09130
09140
             0(1,2) = 0.
             0(2,1)=1.E20
09150
         24 CONTINUE
09160
09170
             DO 25 M=1,4
09180
             LL=(M+1)/2
09190
             DO 25 J=3.4
             PM(K+M+J) = C X(K+M+1) + PM(KK+1+J)
09200
                         +X(K,M,2) + PM(KK,2,J) > + Q(LL,1)
09210
           8
                       + ( )(K,M,3) + PM(KK,3,J)
09220
                          +X(K,M,4) + PM(KK,4,J) ) + Q(LL,2)
09230
         25 CONTINUE
09240
09250
         26 CONTINUE
             COLVE FOR C(NS) AND D(NS)
092600
09270
09280
             T3≈2.0•V(1)
             T4 = T3-1.0
09290
09300
             \mathsf{FM}(1) = \mathsf{P} \bullet (\mathsf{PM}(1,1,3) + \mathsf{PM}(1,3,3)) + \mathsf{T3} \bullet (\mathsf{PM}(1,2,3) + \mathsf{PM}(1,4,3))
09310
             FM(2) = P \cdot (PM(1,1,3) - PM(1,3,3)) + T4 \cdot (PM(1,2,3) + PM(1,4,3))
09320
             FM(3) = P \cdot (PM(1,1,4) + PM(1,3,4)) + T3 \cdot (PM(1,2,4) - PM(1,4,4))
09330
             FM(4) = P + (PM(1,1,4) - PM(1,3,4)) + T4 + (PM(1,2,4) + PM(1,4,4))
09340
             DFAC=SC(1)/((FM(1)+FM(4)-FM(3)+FM(2))+P+P)
09350
                A(LC,NS) = 0.0
09360
                B(LC\cdot NS) = 0.0
09370
                C(LC,NS) = -FM(3) +DFAC
09380
                 D(LC,NS) = FM(1) \bullet DFAC
09390
             BACKSOLVE FOR THE OTHER A.B.C.D
09400C
09410
             DD 91 K1=1.N
             A(LC_1K1) = (PM(K1_11_13) + C(LC_1NS) + PM(K1_11_14) + D(LC_1NS)) \times SC(K1)
09420
             B(LC,K1) = (PM(K1,2,3) + C(LC,NS) + PM(K1,2,4) + D(LC,NS)) / SC(K1)
09430
              ( ( LC_1 K_1 ) + (PM(K_1, 3, 3) + C(LC_1 NS) + PM(K_1, 3, 4) + D(LC_1 NS) ) \times SC(K_1 ) 
09440
         91 D(LC,K1) = (PM(K1,4,3) + C(LC,NS) + PM(K1,4,4) + D(LC,NS)) \times SC(K1)
09450
        100 CONTINUE
09460
09470
            RETURN
09480
            END
             SUBPOUTINE SIMEQ (A.B.N.KERP, IDIM)
09490
095000
             SIMEG
              THIS SUBROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS
095100:
              AX=B BY THE METHOD OF PIVOTAL CONDENSATION. IT IS USED
095200:
              FOR DENSE MATRICES OF COEFFICIENTS.
095300:
              CALLING ARGUMENTS:
095400:
              A: THE NAME OF AN N BY N MATRIX OF COEFFICIENTS OF THE EQUATIONS
095500:
                       WHICH IS DESTROYED DURING COMPUTATION.
095600:
```

```
095700:
               B: THE NAME OF AN APPAY CONTAINING THE N CONSTANTS.
 095800:
              N: THE ORDER OF THE SYSTEM
              PERP: INDICATOR RETURNED BY THE SUBPOUTINE MHICH IS ONE IF SYSTEM IS SINGULAR AND SERO OTHERWISE.
 095900:
 0966063
096100:
                      PEAD A COLUMN BY COLUMN.
 0.96 \pm 0.00:
 0.96 \pm 0.0
              DIMENSION A: IDIM: IDIM: *B(IDIM: *L(50): M:50)
 09640
              FP1=1E-6
              EPIOP=EPI+EPI
的特殊等的
               FEPP=0
 0.966.0
096700:
               CLEAR OUT PERMUTATION VECTORS
               DO 3 I=1.M
09680
0.9690
                M \cdot I \cdot = 0
09700 3
                \mathbf{L} + \mathbf{I} + \mathbf{e} \hat{\mathbf{0}}
097100:
              LOOP FOR N PIVOT POINTS
09720
                DO 14 FP=1.N
09730
                \mathbf{F} = \mathbf{0}.
09740
                P[0P=0]
                DO 7 I=1+N
DO 7 J=1+N
09750
09760
                IF(M) I + 17.4.7
09770
09780 4
                IF-L-J-7-5-7
09790 5
                TER LIVE
09800
               TIOF=T+T
09810
               IF (TOOP-POOP)7,7,6
09820 6
               F = T
09830
               POORHTSOR
09840
               P=I
               k \in \pm 1
09850
09860 7
               CONTINUE
               IF (PSOR-EPSOR)17,17,8
09870
               M. KP .= KC
09880 8
09890
               L(KC)=1
099000:
              DIVIDE KEY ROW BY PIVOT
09910
              DO 30 J=1.N
09920
               IF(L(J))30.9.30
09930 9
               A(kP) J) ≈A(kP) J) ZP
09940 30
               CONTINUE
09950
               BKR=B(kR)/P
09960
               B(KP)=BKP
              SUBTRACT MULTIPLE OF KEY ROW FROM OTHER ROWS
099700:
09980
               DO 14 I=1.N
09990
               IF (I-KP)31,14,31
               P=A(I+KC)
10000 31
10010
              DO 33 J=1.N
               IF (L(J)) 33+32+33
10020
               A ( [ , ] ( = A ( [ , ]) - R+A (KR , J)
10030 32
10040 33
               CONTINUE
10050
               B(I)≈B(I)-P◆BKR
               CONTINUE
10060 14
100700:
              REDRIDER RESULTS
10080
               DO 35 I=1.N
               IP=M(I)
10090
10100 35
               A(IP, 1) = B(I)
10110
              DO 36 I=1.N
               B: D\cong A: I*1)
10120 36
10130
               PETURN
101400:
              EPPOR ACTION
10150 17
               KEPP=1
10160
               PETURN
10170
               END
```

PEADY

APPENDIX C: CUIDE TO USE OF COMPUTER PROGRAM PAVEVAL

The computer program PAVEVAL calculates the allowable load-carrying capacity and the required overlay thickness for rigid and flexible pavements. A program listing is contained in the report by Weiss. Input guides, typical inputs, and typical outputs are furnished in this appendix for evaluation of load-carrying capability of both flexible and rigid pavements.

INPUT GUIDE FOR FLEXIBLE PAVEMENTS

Line 1

Title 80 characters

Line 2

NSYS

NSYS = Number of problems to run

Line 3

EKEY2 = Pavement problem code: set = 0, for allowable load

Line 4

ES	EA	YRN	ALOAD	ALIN	CAREA	DSM	SWL	PCRATIO
		<u> </u>			<u> </u>			<u></u> i

ES = Subgrade modulus, psi

EA = Asphalt modulus of existing layer

YRN = Yearly load repetition number

ALOAD = Initial load, 1b

ALIN = Load increment, 1b

CAREA = Contact area (πr^2) , in.²

DSM = Dynamic stiffness modulus, for reference only (any number) SWL = Set = 0PCRATIO = Pass-to-coverage ratio Line 5 NLAYS ISMO IRED NLAYS = Number of layers in payement system ISMO = Request for rough computational procedure: set = 0 IRED = Input format for Line 6: set = 0 Line 6-1 through 6-(NLAYS-1) (one for each layer, except last layer) E(i) NU(i) THICK(i) AK(i) E(i) = Modulus of layer i NU(i) = Poisson's ratio of layer i THICK(i) = Thickness of layer i AK(i) = Interface compliance: set all <math>AK(i)'s = 0 Line 7 E(NLAYS) NU(NLAYS E(NLAYS) = Modulus of last layer NU(NLAYS) = Poisson's ratio of last layer Line 8 NLOAD NLOAD = Number of loaded areas Line 9 (one for each load) LOSTRS(i) X(i)Y(i) HOSTR(i) PSI(i) RADIUS(i) LOSTRS(i) = Vertical load for load area i RADIUS(i) = Radius of loaded area i

```
X(i) = Abscissa of center of loaded area: set = 0
```

Y(i) = Ordinate of center of loaded area: set = 0

HOSTR(I) = Horizontal load for load area i: normally = 0

Line 10

NPOS

NPOS = Number of depths that will be used for iteration purposes: set = 2

Line 11-1 through 11-NPOS

```
LAYER(I) AX(i) AY(i) DEPTH(i) ETA(i)
```

LAYER(i) = Layer number for position i: set; LAYER(1) = 1, Layer(1) = NLAYS(last layer)

AX(i) = Abscissa of position: set <math>AX(1) = AX(2) = 0

AY(i) = Ordinate of position: set <math>AY(1) = AY(2) = 0

ETA(i) = Angle from which position is observed: set = 0

TYPICAL INPUT FOR FLEXIBLE PAVEMENT EVALUATION

```
0100001
020%: IDENT: POSF300, BUSH
10303:OPTION:FOPTRAN
040%:MSG3:060480/1700
030%: USE: . GTL1T
0A0%: FORTY: XREE
070%: SELECTA: PAVEVAL
0801: NOTE: PAVEVAL
090%:EXECUTE
100%:LIMITS:30,30K,,15000
110PTRF 18 20 KIP SINGLE
                                                     LINE 1
                                                     LINE 2
120 1
130
                                                     LINE 3
140 8320 770000 25000 20000 1000 127 1000 0 7.94 LINE 4
150
    3 0 0
                                                     LINE 5
    770000 0.35 7.5 0
                                                     LINE 6-1
160
    40304 0.35 20.5 0
                                                     LINE 6-2
170
                                                     LINE 7
180 8320
           0.40
                                                     LINE
190
200
     9500 6.36 0 0 0 0
                                                     LINE 9
210
                                                     LINE 10
220 1 0 0 7.5 0
                                                     LINE 11-1
     3 0 0 28. 0
                                                     LINE 11-2
2401:ENDJOB
```

TYPICAL OUTPUT FOR FLEXIBLE PAVEMENT EVALUATION

•
•
-
•
4
~
C
_
بلا
Œ
⋖
3.
C
نــــ
ر
⋖
-
7
ш
L Z
ш
111 2- E-
> د د
ш ≥
> د د
ш ≥
ш ≥ ≥ ∧
ш ≥
ш ≥ ≥ ∧
E > A ∨ E ₹ E
田 2 日 7 女 日 日 日 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五
田 2 日 7 V 7 日 1 4 I
田 2 日 7 女 日 日 日 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五
TATE OF A CHARM
HARA BILL X
TATE OF A CHARM
HARA BILL X
HARA BILL X
Ⅱ 2 日 7 ▼ C
田 M M M M M M M M M M M M M M M M M M M

医多种氏征 医多种氏性 医克拉克氏征 医多种氏征 医克拉克氏征 医克拉克氏征 医多种	STRL (SUBBARDI LIMITING STRAIN) # 0,00085465	SPHALT LIMITING STRAIN) = 0,00027464	20000,	1000,	· · · · · · · · · · · · · · · · · · ·
	TRL (SUBBRADI	TRL2 (ASPHAL	LOAD E	1.11 ×	***

SYSTEM NUMBER

	SHEAK DIRECTICI
INTERFACE SPRINGCOMPL 0.	- POSITION -
171CKNESS 0,7500E 01 0,2050E 02	LOĀD X 0,
POISSON'S RATID 0.3500E 00 0.3500E 00	RADIUS OF LOADED AREA U.6360E 01
N YOUNG'S 1004UUS 0.7700E 06 0.4030E 05	SHEAR Strengs 0.
CALCULATION METHOD RUCH POUGH 0	NORMAL STRESS 0.1574F 03
LAVER LUMBER 3	LOAD PUPBER 1

					!	TANGE/YERT.	TANGS / MERT
						BAD, LVERT.	SAD, AVERT,
				THETA	;		7,50
UNBER 1	16Eh 1	1765	7 0.7500E 01			RAD./JANG.	RAD./TANG.
PC#14102 ZCZBER	LAYER NUMBER	COMBDINATES	*	1)	VERPICAL D:2794EF01	VERTICAL -0:2507E 02	YERFICAL *0.2571E=03
			c	DISTANCE TO LOADWAXIS(1)	TANGE ATIAL 0.	TANGENTIAL 0.2458E 03	TANGELTIAL 0.2193E-03 STRAIN = 0.00021928
					DISPLACEMENTS PADIAL 0	PADTAL PADTAL 0.2458E 03	STRAINS RADIAL 0.21945-03 MAXIMUN NOPHAL STRAIN =

			, =	. <u>.</u>	•	TANGS/KERT.	TANGU VERT.
				7.EF4.A		SADIAKERT.	BAD, 4VERT.
HBER 2	8EK 3	165	2 0,2800E 02	¥	1	RAD./TAMG.	RAD, / TAMG. 0. 20.00
PCS1TION NUMBER	LAYER NUMBER	COORDINATES	** ** ** ** ** ** ** ** ** ** ** ** **	18(1)	VERTICAL 0.2133E=01	VERTICAL -0:3367E 01	VER*1CAL •0:420E=03 0:
				DISTANCE TO LOADWAXIS(1)	TANGENTIAL 0.	74NGE4714L 0.7656E-01	TANGE4TIAL 0.1574E-03 -0.00041205
					DISPLACFMENTS RADIAL 0:	RADIAL O. 7456F101	STRAINS RAFIAL 0.1674ETGG VERTICAL STRAI * 8

			TANGS/KEET. 0: TANGS/WEET.	d:		!					TANGE, VERT,	1 > 2 6 9 / 2 6 9 4
			SAD, (VERT.)								RAD, EVERT.	BAD LVERT
		7¥£7. 0.		7,50					THETA 0.			
486.8 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.7500E 01		KAD./TAMG.	0 .0	46 5.8 2	8Eh 3	7ES	7 0,2880E 02			KAD. / TANG.	HAD. CTANG. 0. 28:00
POSITION NUMBER LAYED NUMBER COORDINATES	> 6		VERTICAL VERTICAL * PC.2 V. DE.	VERTICAL 10:2901EPOS 0.	POSITION NUMBER	LAYER NUMBER	COORDINATES	* *	13	VERTICAL O?2241ERO1	VEHTICAL POCSUSTE OS	VEHTICAL •0:4329End3 0:
	.*0	DISTANCE TO LOADWARIST 13		TANGENTIAL D.2304E:03 STRIIN # 0.00023039				. 6	DISTANCE TO LOADWAXIB(1)	TANGE VTIAL 0.	TANGE UT TAL 0.8043E-0[TANGENTIAL 0.1759E-03 -0.00043691
		DISPLACEMENTS	APDIAL SYSTEMSES SYSTEMSES APDIAL O'SYSUE O	RADÍAL O.2304E=03 Maximum Normal S						DISPLACEMENTS RADIAL 0:	STRESSES RADIAL 0.8643EF01	~ ~

		TANGENERT	TANGS MERT.	!							TANGS/MERT, 09	TANG?/YERT. 0:
		RAD; ENERT,	SAD, (YERI,								RAD; (VERT,	SAD, 4VERT.
	THETA 0.		7.50						THETA	•		
1 8.7500E 01		HAD. / TANG.	HAD./TAMG.		MBLR 2	BEF. 3	7ES	2 8.2880E 02			HAD./TANG.	HAD./TANG. 0. 28.00
* * * * * * * * * * * * * * * * * * *		VERFICAL OCSOTREFOR VERFICAL	VET 41CAL VET 41CAL 10(2830E108		Poblition number	LAYER NUMBER	CDORDINATES	» ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	8(1)	VERTICAL 0.2347EP01	VEHTICAL FOCTYONE OR	VETT-ICAL 10/4@URE100
	DISTANCE TO LOAD-AKISC 19	TANGENTIAL 0. TANGENTIAL	2 "						DISTANCE TO LDADWAX18(1)	TANGE 471AL 0.	7ANGE Y71AL 0.8426E-01	TANGEYT!AL 0.1842E-05 -0.00045352
	DISPLACEMENTS	Abolat O. Naprosfs Abolat	STRAINS RADIAL D.24146803 MAXIMUM POPMAL STRAIN							DISPLACEMENTS Radial O.	10-10-40 14-10-40 10-10-40-40	AADIAL AADIAL O.1847EROJ VERTĪCAL STRAI

PCSITIBN NUMBER 1

LAYER NUMBER COURDINATES

		1	TANSS/MERT 01	TANSS/VERT. 09			ļ			TALGO / VERT. 0 ?	TANGS / KERT.
		ì	RAD; LERT;	BAD, LVERT.						BAD, ZVERT.	RAD, LVERT.
		7167A		7,50				THETA 0			
-4 -# 03	2 0.7560E 01		KAD, / TANG.	HAD, TANG; 01		BER 3	1 0,2680E 02			HAD./TAME.	RAD./TANG. 0. 20.00
LAYER NUMBER COCRDINATES	* *	1) VEH41CAL 0:02156701	VERFICAL +0:2976E 02	VERTICAL 10.2958FF03 0.	POSITION NUMBER	LAYER NUMBER COORDINATES	×	13	VERPICAL OCZBS4EF01	VERFICAL +0:3874E 01	VERFICAL "O'A741EFOS O:
	•	DISTANCE TO LOAD-AXIS(1) 0. TANGENTIAL 0.	TANGENTIAL 0.2827E 03	TANGENTIAL 0.2223F-03 Train = 0.00028233			•	DISTANCE TO LBADeaxist 1)	TANGELTIAL 0	TANGELTIAL 0.8810E-01	TANGE 11AL 0.1926=03 -0.00047414
		DISPLACFMENTS RADIAL 0.	247ESSES RADIAL 0.2626E 03	STRINS RADIAL 0.2552E-03 MAXIMUM KOFMAL STRAIN =				,	DISPLACEMENTS RADIAL 0.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	RADIAL O'1926EROS VERTICAL STRAF

PCBITION NUMBER 1

						RAD; LYERT.	RAD, (VERT.
				THETA	• •		7.50
MBE 8 1	18EK 1	TES	Z 0,7500E 01			RAD./TAMG.	RAD, TANG.
POSITION NUMBER	LAYFR NUMBER	COORDINATES	* *	11	VFH TICAL Brissserol	VERFICAL -0.3108E 02	VERFICAL POINGB7ERON O.
			0	DISTANCE TO LOAD-AXISC 1)	TANGENTIAL 0.	TANGENTIAL 0.2952E 03	TANGENTIAL 0.26336703 17 m 0.00826330
					DISPLACEMENTS RADIAL 0:	25050 C C C C C C C C C C C C C C C C C C	MAKIMUN POPHAL STRAIN #

TAMBE/MERT. 01: TAMBE/MERT. 00:

		TANGS/MERT. OF TANGS/WERT.
		RAD, AVERT.
	THETA	•
64 P2	2 0,2 00 0E 02	HAD./TANG. 0. HAD./TANG. 28:00
STTICH NUMBER LAYER NUMBER COORDINATES		۱ ۰
POSITION NUMBER LAYER NUMBER COORDINATES	* * * * * * * * * * * * * * * * * * *	VERTICAL 0:2861EF01 VERTICAL 0:4040E 01 VERTICAL 0.4946E=03
	DISTANCE TO LOAD-AKISE 18	TANGE VT LAL 0.91936-01 TANGE VT LAL 0.2010 EF 03 -0.08049475
		DISPLACEMENTS RADIAL STRESSS RADIAL O:9193E-01 STRIAL STRIAL STRIAL O:2010EMO3

					TANGE / VERT	TANGE VERY.							TANGS/KERT. 09	TANG!/YERT. 09
					RAD, ZVERT.	RADIZVERT							RAD; ZYERT; 9;	RAD, KWERT.
			THETA 0.			7,50	:				THETA	;		
BEK 1	.TES	2 0.7500E 01			RAD./TANG.	8AD:/TAMG; 0. 0.	1865 2	BEh 3	TES	2 0.2800E 02			RAD:/TANG.	HAD./TAMG. 0. 28.00
LAYER NUMBER	COUNDINATES	* .0	6(1)	VER410AL Bruadore Por	VERPICAL *073235E 02	VEMTICAL -0-3215E-05 0.	POSITIEN NUMBER	LAYFE NUMBER	COUNDINATES	* * * * * * * * * * * * * * * * * * *	8(1.)	VEHTICAL O'2667EPOS	VERPICAL -OC4211E 01	VERFICAL -0.9454EP03 0.
			DISTANCE TO LOADWAXIS 11	TANGE UTIAL O.	TANGENTIAL 0.3075E 03	72NGEVTJAL 0.2743E-03 Fain = 0.00097427					DISTANCE TO LOADWAXIS(1)	TANGELTIAL 0.	TANGE 4T [AL 0.9576E-01	TANGCYTIAL 0.2094E-03 -0.00051537
			0 N G G G G G	RADIAL 0: STREAMEN	C 3075E 03 STRAINS	RADIAL 0.2743EF03 MAXIMUP NOPMAL STRAIN R						DISPLACEMENTS RADIAL D: Afderser	######################################	RADIAL 0.2094EF03 VERTICAL STRAI 4 #

PCSITION NUMBER 1

PCSITION NUMBER 1

LAYFO NUMBER 1. COOMDINATES

			TANGS/HERT. 07	TANGE / VERT
	< <		RAD, LUERT.	BAD; dVERI.
	THET	;		7.50
Z 8,7500E 01			RAD./TANG.	RAD-/TAMG, 0.
* * * * *	7	VERPICAL Brudoseros	VERFICAL -0.3365E 02	**************************************
	DISTANCE TO LOADOARIU(1)	TANGENTIAL 0.	TANGELTIAL 0.3198E 03	TANGENTIAL 0.2952E+03 = 0.09028524
		DISPLACEMENTS PADÍAL 0.		AADIAL RADIAL 0.2852EPOS MAXIMUM NOPHAL SPRAIN

ALDAL + 20800.
PSI + 204.72
FS + 8320. KS + 0, AS + 0.302168
BE - 0:001745

TOTAL ALLOMABLE METBHY . 92787;

.*								
4		•		ċ	3	÷	•	á
					7:50	7.58	80308	\$8.08
							•	
ċ				<u>.</u>	•	•	•	•
ė	7.50	30.50						
20.50	141CK .	THICK .	SUBROUTING POST-LILLER	ċ	ċ	٠	ò	•
THICK APPAY # 2	KK = 1	* * *	SUBROUTINE	•••	144	~	~	n

-1	-		
PCSITION NUMBER	LAYER NUMBER	CODEDIMATES	

1				0.3736-01	
		TANG\$/YERT.	TANGS VERT.	× 5	COHONE TO CO
		RAD, EVERT.	AAD; EVERT;	77 78 78	COATONENT CONTONENT CONTON
THETA 0.		RAD./TAMG.	HAD./TANG.	X X 	## E E T D N # O F T D T A L S T R E S BHEAR STORES STRAIN COMPONENT LOOG O 1148E 03 0 7206E-03 0 170707 0 172E-02 0 7301E-09 0 1707
	VERTICAL 0-3925EPO1	VERTICAL R	VEHTICAL OCIS44ERGS	22 -0,289E 83 0. 0,134E183 0.	5 60-301E-08
DAKIS(1)	VERTI 07392	VFR41	1年1日入 のようの	YY 40,440E 03 -8,279E#03	
DISTANCE TO LBAD AXIS(1)	TANGENTIAL O.	TANGENTIAL -0.4403E 03	TANGENTIAL -0.2786EF03	XX XX	P R I N C I P A L V A L U E S A N C NORMAL STRAIN AND STRAIN TO ST
	DISPLACEMENTS PADIAL O:		APDIAL APDIAL 10.27888103		# R I N C I P A L V A NOKHAL STRESS MAXIMUM

					TANGS/VERT.	TANG:/WEBT.	ه م د	A CO	
					BAD, 4VERT.	BAD, LYERT.	ж 200	A A A A A A A A A A A A A A A A A A A	1.707
THE A	BEA 1	res	1 0,7500E 01	THETA	RAD./TANG.	BAD. ZANG.	WZ KZ	SHEAR COMPONENT STRES STRAIN COMPONENT 1,000 0:310E-03 0:707 0:310E-03 0:707 0:707	0.707
N MARKE VOLUMEN N	LAYER NUMBER	CODEDILATES	*	17)8(X)	VERTICAL 0.3635E-01 VERTICAL -0.3365E 02	VET41DAL 40/0044EBCB	77 0,320E 03 =0.334E-62 0,285E=03 =0.334E-63	0,177E 03 0;310E-0	
				DISTANCE TO LOAD-AXIS(1)	TANGENTIAL 0. TANGENTIAL 0.3199E 03	TANGENTIAL 0.2852E-03	XX XX XX XX XX XX XX XX XX XX XX XX XX	PAL VALUES AND MORNAL STRAIN S	7.32GE 03
					UISPLACEMENTS RADIAL OSTAFSES STAFSES OSTAFSES OSTAFSES	STRATES RADIAL 0.2859Er03	# € # # # # # # # # # # # # # # # # # #	A MANAGE A M	

0.3636-01

3

STRAIL FLERGY 0.9684E-01.

n	8		2 0.7500E 01
PCBITION NUMBER 3	LAYER NUMBER	CONTOINATES	÷ .
			×

				# P P P P P P P P P P P P P P P P P P P		i			;	
		TANG\$/VERT. 0:	TANGS/MERT.	,	;	S T R A I R B Z COMPONENT		1.000	-0.407	0.707 0.00
		. :		¥ 70	•	F 5		67	64	0.7 7.7
		RAD (VERT.	BAD, EVERT.	#		S S G G A N D T T D S T ON E N T		6.707		6.707
THETA	;	RAD,/TAMG; 0.	TANG.	,		ALSTRES X COMPONENT	000		202.00	707.0
		RAD./	HAD+/TANG. 0.	, vz		O F T D T Shear Strain		0.7556E-03	0.556E-B3	0,1626-11
X S(1)	VER 9 ICAL 0:3635E # 01	VERFICAL *0.3365E 02	VEPTICAL •0:8273EF03	YY 22 -01430E 00 -0.336E 62 01285EF03 -0.887E=63	,	C T A T O T T O T A T S T A T B S T A T A T A T A T A T A T A T A T A T		0,1666.02 07	0,168E 02 07	0,6526.07 0.
DISTANCE TO LOADWAXIS(1)	TANGENTIAL 0.	TANGE UTIAL	TANGE 471AL 0.2852E=03	* 00.4.00	- 2 - 2 - 1 - 1	OFFINE STAFES STAFES	.430E 00 0.285E=03	20 He20:	-1,170E 02	#3,430E 00
	DISPLACEMENTS RADIAL O:	AADTAL -0.4402F 00	20576-03	- F.		0. ₩ ₩ ₩ ₩	MAXIMUM FOR	MAXIMUM	HINIHAX	MINÎMUM 13

4
Ľ
æ
Ŧ
_
Z
z
Z
-
-
-
œ
2
•

SAYFR HUMBER 2

COCHDINATES

			~*	<u>.</u> •	0.2775-01	
			TANGS/YER?	PANES / YERT.	λ0 .°c	CO A A CO
				RAD, (YERT	X 93	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
0.2800€ 02	THETA 0.		BAD, / TANG; 0:	RAD, TANG.	, wz , wz , wz , o. o.	STRAIN COMPONENT CB. STRAIN COMPONENT CB. 1,000 0,280E-03 0,707 0,280E-03 0,707 0,707 0,707
0,	1 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VZH91CA5 072774EPO1	YER71CAL -0743808 01	VERTICAS #073022E-08	77 27 0:1115 02 \$0:4586 01 6:2186403 50:3026563	0 (R & C + 2 D N 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	DISTANCE TO LUADWARIB! 1)	TANGENTZAL O	748621713L 0.1114E 02	TANGE 473AL 0.2177E-03	2	1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANDIAL SADIAL SABRES	RADIAL 0.1114E 02	RADIAL 0.2177E=03	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRINCE TEAL STRESS TRESS

STRATH ENERGY 0.3088E-02 STPA!! ENFRGY OF DISTORTION 0.2690E-02

		POST TIBN NUMBER	NUMBER 5			
		LAYE	LAYER NUMBER S			
		Coops	CODÍDINATES			
		135 O	6.200E 02			
	DISTANCE TO LOAD-ARIST 0.	R18(1)		THETA 0.		
DISPLACEMENTS PADIAL 0	TANGENTIAL 0	VERPICAL PCR974EROS				
STANSANS BADTAL 0.0050EE01	TANGENTIAL 0.9959Er83	**************************************	RAD. / TANG;	BAD, JUERT,	TAMBOZEET	
STRAINS RADIAL 0.2177E=03	TANGENTIAL 0.2177E#88	MERPICAL:	BAD./TANG.	EAD : JUST :	TANGS, MERT	
MA (ω <u>~</u> .	81996E#01 001438E 61	200	, oxto	A A	70
2 V C		2 C C C C C C C C C C C C C C C C C C C	0 7 7 0 7 1 8	0 X 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S T R A I N G	
ACHINES D. AUNIMANA P. ACHINES D. C. AUNIMANA P. C. AUNIMANA P. ACHINES D. C. ACHINES	818A 818A 0 . 218		STRAIN COMP	COMPONENT SEEPONENT	COMPONENT	
TO MENT TO THE TOTAL THE T		0 222k 01 0	0.3776-63		100	
MINIMAX 60.214E 01			0.377E-03 0	707 B.	0. 407	
MENIMUM 1.998E-01	E-01	0.3026502	0.5465-81	707 0.787	•	
STRAIN ENERGY OF DISTORTION 0.1129	NIN ENERGY G.LLOGE.CE DISTORTION G.LL29Er02					

INPUT CUIDE FOR RIGID PAVEMENTS

Line 1

Title 80 Characters

Line 2

NYSYS

NSYS = number of problems to run

Line 3

EKEY EKEY2

EKEY2 = Pavement problem code: set = 0, for allowable load

Line 4

DSM	FAC	YRN	R	ALOAD	ALIN	CAREA	SWL
L				i			

DSM = Dynamic stiffnes modulus, for reference

FAC = Pass-to-coverage ratio

YRN = Yearly load repetition number

R = Flexural strength, psi

ALOAD = Initial load, 1b

ALIN = Load increment, 1b

CAREA = Contact area (πr^2) , in.²

SWL = : set = 0

Line 5

NLAYS ISMO IRED

NLAYS = Number of layers in pavement system

ISMO = Request for smooth computational procedure: set = 1

IRED = Input format for Line 6: set = 1

Line 6-1 through 6-(NLAYS-1) (one for each layer, except last layer) E(i) NU(i) THICK(i) ALK(i) E(i) = Modulus of layer iNU(i) = Poisson's ratio of layer i THICK(i) = Thickness of layer i ALK(i) = Reduced interface compliance: set; ALK(1) = 1000, all other ALK(i)'s = 0 Line 7 E(NLAYS) NU(NLAYS) E(NLAYS) = Modulus of last layerNU(NLAYS) = Poisson's ratio of last layer Line 8 NLOAD NLOAD = Number of loaded areas Line 9 (one for each load) LOSTRS(i) RADIUS(i) X(i) Y(i) HOSTR(i) PSI(i) LOSTRS(i) = Vertical load for load area i RADIUS(i) = Radius of loaded area i X(i) = Abscissa of center of loaded area: set = 0 HOSTR(i) = Horizontal load for load area i: normally = 0 PSI(i) = Angle of Hostr(i) with respect to positive x-axis in

Line 10

NPOS

NPOS = Number of depths that will be used for iteration purposes:
 set = 1

degrees: normally = 0

```
Line 11-1 Through 11-NPOS
```

```
ΛY(i)
                              DEPTH(i)
    LAYER(i)
              \Lambda X(i)
                                       ETA(i)
    LAYER(1) = Layer number for position i; set = 1
    AX(1) = Abscissa of position: set = 0
    AY(1) = Ordinate of position: set = 0
    DEPTH(1) = Depth from pavement surface to position; set = THICK(1)
    ETA(1) = Angle from which position is observed: set = 0
TYPICAL INPUT FOR RIGID PAVEMENT EVALUATION
    01 000N
    020%:IDENT:ROSF300.BUSH
    030%:OPTION:FORTRAM
    040%:MSG3:060420/1700
    050%:USE:.GTLIT
    060%:FORTY:WFSF
    070%:SELECTA: MAVEVAL
    080%:NOTE:PASS VAL
    090%: EXECUTE
    100%:LIMITS:30,30K,,15000
    110FCC FOAD SECTION 8
                                                    LINE 1
    120 1
                                                    LINE 2
    130
         3 0
                                                    LINE 3
    140 1000 7.94 25000 799 15000 1000 127 0
                                                    LINE 4
    150
         3 1 1
                                                    LINE 5
    160
         4000000 0.15 6 1000
                                                    LINE 6-1
    170
         78787
                  0.30 10 0
                                                    LINE 6-2
    180
         12278
                  0.40
                                                    LINE
    190
                                                    LINE 8
    200
        9500 6.36 0 0 0 0
                                                    LINE 9
    210
                                                    LINE 10
    320
        10060 \cdot
                                                    LINE 11-1
```

PEADY

2301: ENDUDE

TYPICAL OFFET FOR SIME PAVENET EVALUATION

TIC PEAR SECTION B

如此是什么,我们也是什么的,如此也是是我们的是有一种的,我们也是有一种的,我们也是我们的,我们也不会会会会会会会会会会会。 0.585630

0.354866

१ १९८ = १६८६०.

FAC = 7,6400

52972. # 13 J

* * C * O 1 175,571 ι.:. ---*

.65/

137 = 1900. ALCAN = 19000.

.

M.C. = 1500.

748,59533145 11

		TANGE/WERT.	TANGY/VERT.		
		RAD LVERT	BAD, 4VERT.		1
NUMBER 1 UMBER 1 NATES	2 6,50908 61	THETA 0. 0. RAD, /TANG.	0. 0. 6.00	S REDUCE D SPRINGENPL 10.4000E 04	Y DIRECTION
POSITION NUMBER LAYER NUMBER COORDINATES	** ** **	VEHTICAL GT1837EFO1 VEHTICAL -0.1170E 02	- OCCUPATION - OCC	TWICKEES SPRINGS 0.9000M 01 0.4000E	D, DATE POSITION O.
	•	DISTANCE TO LOADWAKISK 13 0. TANSENTIAL 0. TANSENTIAL 3.3630E 03	4~\$E\714. 0.7758ErGa 362.998&528	POISONTS DJLUS RATIO POINTS 1995 05 01 40006 00 01 40006 00	MADIUW OF MARKS COADED APPRA
			STRESS H	CALCULATION VOIN	NOPYAL STRESS 6.1130F 03 0.
		DISPLACEMENTS RABIAL OFTRESSIS RABIAL OFTRESSIS RABIAL OFTRESSIS ATTENTION	AANTON CONNAL	14 40 74 8 89 8 89	1040 1040 1040 1040

•						
	1	. 365	1006.	362;9998258	Seventian de la	
	•	#•			m #	į
## ###################################	1Sd	5	nsı.	RSTS	STORES	

	0.0							
	70		-	.	4	j	-	B.
, ,				6	6:08	6 .c0	₹6,09	10:01
	*0 *0			.0	D	٥,	Đ;	9.
	•	6.03	10.00		i			
ı	១០«ខ្មុ	THICK .	141CK #	SLBROUTILE POST30.	- 1		•	1.
	THICK ARGAY R	·e4	~	UT11.5. P	.44	~:	~	m
	THIC	¥	¥	SLBRC	i		·	;

315791

TOTAL SLLDSAPLE WEIGHT .

			TANGE/ERT. D?	TANGT VERT	8X BY BZ	A W A W A W A W A W A W A W A W A W A W	000.000
			BAD; (VERT.	RAD, (VERT.	24 CO	A A SA	7 207
MOER 1	7 P	THETA	RADICTANG.	HADICTANG.	0. 0; 0. 0;	2	0.390E-04 0.707 0.390E-04 0.00 0.273E-13 0.707
LAYER NUMBER		TT)SIRVA	VERYIGAL OCLUGATEROS VERYIGAL -D'128DE DS	VERTIGAL OCLOTHENDS	77 8.499E 03 20.158E 63 8.795Es04 0.187E186	# 1	0,138E 08 0,136E 03 0,958E505
		DISTANCE TO LOADER!	TANGENTIAL 0. TANGENTIAL RC.3947E 93	16N3E14L 10.7949E104	POPULATION OF A LANGE OF THE CORPORATION OF THE COR	FEAL WALLES AND WEEK WARRAN STREET OF THE ON TO 17976-04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			DISPLACEMENTS RADIAL 0 STPESES RADIAL -0.3945E 07	STRAINS RACIAL -0,7945Er04	12 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	NOTES OF THE PARTY	MINITER TO S

		,	:			0.1546-01		
				TAKG9 / MERT.	TANG; / VERT	, G	CDMPONERT	00.7007 00.7007 00.7007 00.7007
			1 : : : : : : : : : : : : : : : : : : :	BAD, EVERT.	RAD, ERT.	74 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0		6 6 707 0 707 6 707 707.8
r1	4	A. BOUCE 01	THETA 0.	FAD. / TANG.	PAD : / TANG .	42 MZ	CONTRACTOR	-84 0 707 -84 0 1707 -31 0 707
LAYFR NUMBER	COOMDINATES	э- *# °С	17)SIX	VEF416AE 001837E708 VEFF16AE	-071176E 02 VERTICAL -073015E004	77 0.463E 03 ±0;117E 62 0.0; 0.776E=04 ±0;391E:084 0.	OTENT OF THE COLUMN OF THE COL	0,107E 03 0,539E-04 0,191E-04 0,549E-11
			DISTANCE TO LOAD AXISO	TANGENTIAL 0. TANGENTIAL	0.3636F 03 TANGENTIAL 0.7750E-04	2	7 7 800	
				OISSTACT STACT STACT STACT STACT SCHOOL STACT SCHOOL SCHOO	0.3640m 03 STRATES 2ADTA: 0.7788mr04		υ	4 11 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1

STRAIN FNERGY C. 2034F101 STRAIN D. 1249E-01 1.763E 03 3.176E 03

FCO17101 LUKELB . 2

	: * :		!		TANGT / KERT.	TANG? / YERT.	0. 0.1546-61	STRAINS COMPONENT	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					RAD LIVERT.	RADICVERT	MX .00.	S R R R R R R R R R R R R R R R R R R R	6.767
NUMBER 3	HATES	8, 80 50E 01	THEIA		HADAZTANGA.	HADY LIANG.	W. W	SHEAR COMPONENT	0.4146-04
PCGITION NUMBER 3	COORDINATES	* * * * * * * * * * * * * * * * * * *	ix15(1)	VERVIDAL 971937EF04	YENTIGAL -011170E 02	ACTURED YOUR PARTY OF THE PARTY	7Y 22 -C1068F 01 -01117F 62 -61148Enn4 -0,976E-84		0,2518.01 0.
			DISTANCE TO LANGMAXISC 12	TANGENTIAL 0,	TANGENTIAL TO:6676E LE	14N2EVT1AL 10-1477E:04	NK	⊃ द लस	76 32 0 - 975F= D4
				DISPLACE 4FVTS RADIAL 0.	STRENSTS 34D141 -0.54767:01	S-184 1 15 Radial -0.147903-04	1.4 d 1.1 d 4 d d 1.1 d	A C C C C C C C C C C C C C C C C C C C	MAXITAGE COLUMN AND STATES OF SECOND

6.707 8.707 8.707

0,251t. 01 6,251E 01 C1192F=03

0,318E-08 0,414E-04

STANDARD OF YORREST MIND TO YOR WILL AND THE STANDARD OF THE S

-1.668E 01

₹7,919E 31 .1.910E 01

> WININAX HILL TILE

			TANGS VERT. TANGS VERT. D	0.143E-01	COMPONER TO SECOND SECO
		THETA.	BAD: LVERT. BAD: LVERT.	## CO	5
LUNBLB 4 UMBEH 2 NATES	7 0.1690E 02	1H	RAD, CTANG,	2x .0 .0 .0	0 509E-12 0 0 1700 0 127E-03 0 1707 0 127E-03 0 1707 0 170
POSITION NUMBER LAYIR NUMBER CODRDINATES	*>	AKİŞ(1)	VERGIEAL OCTRETEROS VERGIEGOS VERGIEGOS VERGIEGOS	7Y 72 50% 414E 61 01405Ee03 50%1299E=63	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		DISTANCE TO LOADER!	19.05.4114. 0.0000000 10.000000 14.000000 0.0000000 0.104000000	X X X X X X X X X X X X X X X X X X X	R 1 1 C 1 P A U V A U E S A N D STATES
			DISPLACEMENTS JAPOTAL STRESSES TABOTAL STRAILAGE TABOTAL STRAILAGE O'LOABEROS	N N N N N N N N N N N N N N N N N N N	MAXIMIE, C.100E 9 MINTERS MINIMER C.100E 0 MINIMER C.293E 0 G.293E 0 G.

DISTABLE TO LORD-ARIES 11 DISTABLE TO LORD-ARIES 12 DISTABLE TO LORD-ARIES 13 DISTABLE TO LORD-ARIES 14 DISTABLE TO LORD-ARIES 14 DISTABLE TO LORD-ARIES 15	DISTANCE TO GADMARIES COCROTANTES COCR							
PISTAMEE TO LOAD-ARISE 1 PASSESSES P	DISTAUCE TO LORDERIES COCODINATES			PAKER	NCHORD 4			
Distance To Load-Arise 13	DISTAUCE TO LOAD-ARISE 1 PART P	1	: : : :	COCOC	INATES			
PISTANCE TO LOAD-ARISE 13	PISTAUCE TO LOAD-ARRES 13 PERTICAL PETET PE							
DISTABLE TO LOAD-BAISE 13	PISTANGE TO LOAD-ARISE 13			· • · · · · · · · · · · · · · · · · · ·	0.1000 62			
HEITS TANUENTIAL VERFIELD HEADAXANG HAD AND AND AND AND AND AND AND AND AND A	HENTS TANGENTIAL WERPIEAL HADA/XANG RADA/XANG		DISTANCE TO	ARIBS 11	TER STATE	TA.		
NEW COLOR NEW	HENTS TANUENTIAL VERPIEAL RADA/TANG;		ė					
State Stat	TANGENTIAL WERPIEAL RADA/TANG; RADA/	DISPLACEMENTS	「東」トラは別名をト	VERBICAL				
STRESS TANGENTIAL VERFIEAL D. D. D. D. D. D. D. D	STRESS	0.	0.	0013275802				
S TANGENTIAL VERTICAL RADA/TANG NADA/TANG	C P A VERVICEAL NADALTANG; BADLAVERT; TANGEVERT; SALENGE VERT; S	のようではのにの		14 01 00 01 3	RAD. /TABG	DAB: 24ERT	YAGGO / MERT	
STRESS	TANGENTIAL STRESS WOLFERS O-1046E03 O-1046E03 O-1046E03 O-1046E03 O-1046E03 O-1046E03 TANGENTIAL STRESS WOLFERS O-1046E03 STRESS WOLFERS O-1046E03 STRESS WOLFERS O-1046E03 STRESS WOLFERS O-1046E03 O-1046	-0.6178E 00		10 385 pt. 00	0.		10	
STRESS	STRESS 0.1046EF63 -06206E803 0x 0x 0x 0x 0x 0x 0x	22 42 4 C	17 14 17 17 14 14	AFRATEAL.	RAD. /TAME.	RAD, JVERT	YANG VER	
C 1 V A L V E S & N B V 1 N E C V T D V A L D S V D D D D D D D D D D D D D D D D D	C 1 P A L W A L U E S A N D 1 N E P T D N D O N D D D D D D D D D D D D D D D	0.10465803	0.1046EF03	-012461EB02	ő	-	2	
C 1 C A L V A L U E S & N B D 1 R E P T B N B D P T B F R E B R B A N B S T R A 1 N B	STRESS #0.646E do #8.916E 09 \$0740FE 81 0: 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;		X	XX 82	162 162	×		20
CIPAL VALUES ARB DIRETTON & OF TOTAL STREET COMPONENT FUNCTIONENT COMPONENT CO. COMPONENT COMPONENT COMPONENT COMPONENT COMPONENT COMPONENT CO. COMPONENT CO	CIPAL VALUES 4R D DIRETTON 4 OF TOTAL STREET TO A L STREET COMPONENT STREET 444	T 40	## 1010年 00 かりつちゅん 回り ## 1010年 1011年 101		y/•s.•		0.1438-	
-0.618E 00 0.1056=03 378E38 STRATA COMPONENT FUNCTORMS COMPONENT C	-0.616E 00 0.1050=03 370E36 578ATN COMPONENT FUNCTORNER COMPONENT	F. C.	2 N		707 A C 8 4		# Z " Y & - 4	
#0.238E 00 0.2898e03 0.128E 01 0.2812E-83 6 6 8.789 6.9 #0.238E 01 0.178E 01 0.2812E-83 0.707 6.00.9 #0.238E 01 0.2848E07 0.318E-11 0.707 6.00.9	## 0.238E 01 -0.2998e03 0;128E 01 0;281E-03 0;000 0;00		54	2-6536				
60.438E 01 -0.2078=03 0;138E 01 072B1E-03 6; 0:707 6; 0.7	# 0.238E 01 -0.2978*03 0;128E 01 0,28156-03 0;00 0;00 0;00 0;00 0;00 0;00 0;00 0		1.0		000.4	•	0,	
an.238E 01 0,178E 01 0,201E-03 0,707 6. 0.707 6. 0.707 6.707	0,24%E507 0;246E-63 0,707 60,707 0,707		01 -0:2	10 3921.0				
e7.238E 01 0.24KE507 0.316E-11 .0.707 6.707	0,24%E507 0,310E-11 -0,707 6.707		+ D 11 000	}	.281E-83 0,707		Τ.	
-0.618F 00	0.707		38E 01		316E-11 :0,707	6.707	0.0	
		!	1186 00	}	1941	4:119	0	
WHARTS PARTON OF DISSORTION O. LINGSHIP OF								

